Выход АТФ при аэробном распаде глюкозы» (II и III этапы)
Если в дыхательной цепи окисляются ФАД-зависимые субстраты, то пунктов сопряжения остается 2: III и IV комплексы (Р/О = 2) на одну молекулу О2 – 2 молекулы Н3РО4.
Таким образом на третьем этапе за счет водороддонорной и собственно энергетической функции цикла Кребса получаем 24 АТФ.
В сумме на всех трех этапах аэробного окисления 1 моля глюкозы получаем 38 молей АТФ.
Полная энергия распада глюкозы составляет 2880 кДж/моль. Свободная энергия гидролиза высокоэнергетической связи АТФ равна 50 кДж/моль. Для синтеза АТФ при окислении глюкозы используется 38 · 50 = 1900 кДж, что составляет 65% от всей энергии распада глюкозы. Это максимально возможная эффективность использования энергии глюкозы.
Значение анаэробного гликолиза.
Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальном периоде интенсивной работы, т.е. в условиях, когда снабжение кислородом ограничено.
Кроме того, зрелые эритроциты извлекают энергию за счет анаэробного окисления глюкозы, потому что не имеют митохондрий.
Пентозофосфатный путь в метаболизме глюкозы.
Глюкоза может окисляться без предварительной анаэробной фазы.
В результате исследований было установлено, что в печени, почках и форменных элементах крови, особенно во время усиленного обмена углеводов, наряду с увеличением содержания 6-монофосфоглюконовой кислоты образуются пентозо-фосфорные эфиры. Эти факты говорят о взаимосвязи между окислением гексоз и образованием пентоз.
Образование пентоз из глюкозы происходит путем декарбоксилирования и называется апотомическим утем.
Пентозофосфатный путь состоит из двух фаз: аэробной и анаэробной.
Аэробная фаза – система реакций, обусловливающих превращение глюкозы в пентозофосфорные эфиры.
В анаэробной фазе протекают реакции взаимодействия между образовавшимися пентозами, а также другими продуктами, и взаимосвязь их с гликолизом.
В результате окислительного пути (аэробная фаза) образуется 2 молекулы НАДФН2, которые не окисляются дыхательной цепью, а служат источником водорода и электронов при синтезах, включающих реакции восстановления, и образуется рибулозо-5-фосфат – фосфорилированная пентоза.
В результате неокислительного пути (анаэробная фаза) образуется рибозо-5-фосфат. Этот углевод и его производные используются для синтеза РНК, ДНК, АТФ, КоА, НАД и ФАД.
Неокислительная часть пути включает 2 типа реакций: транскетолазную и трансальдолазную. Коферментом транскетолазы является тиаминпирофосфат. Транскетолаза переносит С2-фрагменты, трансальдолаза – С3-фрагменты.
В результате неокислительного пути образуются фруктозо-6-фосфат, 3-фосфоглицериновый альдегид, из которых в процессе глюконеогенеза образуется глюкоза. Некоторые метаболиты неокислительного пути являются также и метаболитами гликолиза.
Все реакции пентозофосфатного пути происходят в цитозоле.
Лекция № 19.
ТЕМА «ОБМЕН УГЛЕВОДОВ».
1. Глюконеогенез – химизм, биологическое значение, локализация.
2. Регуляция обмена углеводов (глюконеогенеза).
4. Патология углеводного обмена: фруктозурия, галактоземия – биохимическая сущность.
- Меры профилактики нарушений обмена углеводов с их биохимическим обоснованием.
- Методы исследования углеводного обмена.
Глюконеогенез – это синтез глюкозы из неуглеводных предшественников. У млекопитающих эту функцию выполняет в основном печень, в меньшей мере – почки и клетки слизистой оболочки кишечника. Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также при длительной физической работе концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза.
|
Использование первичных субстратов в глюконеогенезе происходит при различных физиологических состояниях. Так, в условиях голодания часть тканевых белков распадается до аминокислот, которые затем используются в глюконеогенезе. При распаде жиров образуется глицерин, который через диоксиацетонфосфат включается в глюконеогенез. Лактат, образующийся при интенсивной физической работе в мышцах, печени превращается в глюкозу. Следовательно, физиологическая роль глюконеогенеза из лактата, аминокислот и глицерина различна.
Глюконеогенез в основном протекает по тому же пути, что и гликолиз, но в обратном направлении. Однако имеется очень важная особенность, обусловленная тем, что 3 реакции в гликолизе, катализируемые киназами: гесокиназой, фосфофруктокиназой и пируваткиназой, необратимы и на этих стадиях глюконеогенеза отличаются от реакций гликолиза.
Превращение пирувата в фосфоенолпируват осуществляется при участии двух ферментов – пируваткарбоксилазы (а) и карбоксикиназы фосфоенолпирувата (б):
пируваткарбоксилаза
Пируват + АТФ + СО2 + Н2О ЩУК + АДФ + Н3РО4 (а),
фосфоенолпируват-
ЩУК + ГТФ карбоксикиназа фосфоенолпируват + СО2 + ГДФ (б).
Две другие необратимые реакции катализируются фосфатазой фруктозо-1,6-бисфосфата и фосфатазой глюкозо-6-фосфата:
Фруктозо-1,6-бисфосфат +Н2О → фруктозо-6-фосфат + Н3РО4,
Глюкозо-6-фосфат + Н2О → глюкоза + Н3РО4.
На каждую молекулу лактата при глюконеогенезе расходуется три молекулы АТФ (точнее, две АТФ и одна ГТФ); поскольку для образования глюкозы необходимо 2 молекулы лактата, суммарный процесс глюконеогенеза описывается так:
2 лактат + 6 АТФ + 6 Н2О → глюкоза + 6 АДФ + 6 Н3РО4.
Образовавшаяся глюкоза может вновь поступать в мышцы и там превращаться в молочную кислоту.
Сравним реакцию глюконеогенеза с суммарной реакцией гликолиза:
Глюкоза + 2 АДФ + 2 Н3РО4 → 2 лактат + 2 АТФ + 2 Н2О.
Из этого сопоставления следует, что в результате действия цикла Кори работающие мышцы добывают 2 АТФ за счет расходования 6 АТФ в печени.