П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

П 5. Энергетические эффекты химических процессов.

Термохимические расчеты. Расчет теплоты сгорания топлива.

Пример 1.Термохимическое уравнение реакции. Энтальпии образования вещества.

Напишите термохимическое уравнение реакции, которое отвечает энтальпии образования H2SO4(ж).

Решение.Химические уравнения реакций, в которых указаны агрегатные состояния веществ и тепловые эффекты, называются термохимическими уравнениями.

Стандартной энтальпией (теплотой) образования веществаназывается энтальпия образования 1 моля вещества из простых веществ, если все участники реакции находятся в стандартных состояниях (с.с. при П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru и П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru моль/л), (ΔfН0298 см.Приложение 2, [1]

По определению, искомое уравнение должно состоять из исходных простых веществ, устойчивых в стандартном состоянии:

H2(г) + 2O2(г) + S(к) = H2SO4(ж) , ΔfН0298 H2SO4 = −811,3 кДж/моль.

Из табл. (Приложение 2, [1]).

Отрицательное значение энтальпии образования соединения указывает на то, что в результате образования этого соединения из простых веществ теплота выделяется.

Пример 2. Взаимосвязь изменения энтальпии и внутренней энергии в результате реакции.

Рассчитайте изменение внутренней энергии системы при изохорно-изотермическом протекании реакции

С(к) + СО2(г) = 2СО(г)

при с.с. и 298 К.

Решение. Внутренняя энергия системы U – одна из термодинамических функций состояния системы. Изменение внутренней энергии в результате какого-либо процесса (например, химической реакции) ΔrU равно тепловому эффекту этого процесса, протекающего в изохорно-изотермических условиях (QV,T ), если при этом не совершается никакой работы:

QV,T = - ΔrU .

Энтальпия Н – одна из термодинамических функций состояния системы.

Изменение энтальпии в результате какого-либо процесса (химической реакции) ΔrН равно тепловому эффекту этого процесса, протекающего в изобарно-изотермических условиях (Qp,T), когда единственным видом работы является работа расширения газа:

Qp,T = - ΔrHТ.

Изменение энтальпии и внутренней энергии в результате реакции связаны соотношением:

ΔrН =ΔrU + ∆νRT,

где ∆ν – разница между числом молей газообразных продуктов и числом молей газообразных исходных веществ.

Если ΔrН < 0, то процесс идет с выделением тепла в окружающую среду и реакция называется экзотермической; если ΔrН > 0, теплота в результате реакции поглощается и реакция называется эндотермической.

Согласно данным (Приложение 2, [1] ):

Вещество ΔfН0298,кДж/моль

С(графит) 0

СО2 (г) −393,5

СО (г) −110,5

Для расчета энтальпии химической реакции при с.с. и 298 К воспользуемся следствием из закона Гесса:

ΔrН0298= ∑νiΔf Н0298, продуктов − ∑νjΔf Н 0298, исх веществ ;

ΔrН0298 = 2ΔfН0298СОг − ΔfН0298Ск − ΔfН0298СО2г = 2(−110,5) – 0 – (−393,5) =

= 172,5 кДж. Так как ΔrН0298 > 0, данная реакция эндотермическая.

Изменение энтальпии и внутренней энергии в результате реакции связаны соотношением:

ΔrН =ΔrU + ∆νRT .

Тогда ∆rU0298 = ∆rH0298 – ∆νRT =

= 172,5 – 1·8,31·298·10−3 = 170,02 кДж. (Разница между числом молей газообразных продуктов и исходных веществ равна ∆ν = 2 − 1 = 1 моль).

Универсальная газовая постоянная R=8,31 Дж/моль.К.

Пример 3. Закон Гесса. Метод циклов.

Вычислите тепловой эффект образования NH3 из простых веществ при стандартном состоянии по тепловым эффектам реакций:

2H2 + O2 = 2H2O(ж);; Dr H01 = - 571,68 кДж (1)

4 NH3 + 3 O2 = 6 H2O(;ж) + 2 N2 ; Dr H02 = - 1530,28 кДж (2).

Решение. Закон Гесса: Тепловой эффект реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции, т.е. от числа и характера промежуточных стадий.

Запишем уравнение реакции, тепловой эффект которой необходимо определить:

½N2 + 3/2Н2 = NH3 ; Dr H03 = Df H0NH3= ?;(3).

В уравнения (1) и (2) входят Н2О (ж) и О2, которые не входят в уравнение (3), поэтому, чтобы исключить их из уравнений (1) и (2), умножим уравнение (1) на 3 и вычтем из него ур (2):

2 + 3О2 – 4NН3 – 3О2 = 6Н2О (ж) – 6Н2О (ж) – 2N2 (г) (4).

После преобразования уравнения (4) и деления его на 4 получаем искомое уравнение (3). Аналогичные действия проделаем с тепловыми эффектами:

(3DrH01– DrH02)/4 = DrH03. В результате получаем:
Dr H03 = [3(–571,68) – ( – 1530,28)] / 4 = – 46,19 (кДж);

т.е. ∆ f Н0 NH3 = – 46,19 кДж/моль.

Пример 4.Закон Гесса. Метод циклов.

Определите стандартный тепловой эффект реакции:

С(к) + СО2(г) = 2СО(г); (1),

если известны тепловые эффекты двух других реакций:

2С(к) + О2(г) = 2СО(г) ; ∆rH0298 = −221 кДж (2)

и

2СО(г) + О2(г) = 2СО2(г); ∆rH0298 = −566,1 кДж (3).

Решение.Закон Гесса: Тепловой эффект реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции, т.е. от числа и характера промежуточных стадий.

Для того, чтобы получить уравнение реакции (1), нужно из уравнения реакции (2) вычесть уравнение реакции (3) и разделить полученное выражение на 2. Те же действия следует проделать и с величинами ∆rH0.

Имеем ∆rH01 = (∆rH02 − ∆rH03)/2 = [−221 – (−566,1)]/2 = 172,5 кДж.

Пример 5. Расчет стандартной энтальпии химической реакции при различных температурах.

Рассчитайте стандартный тепловой эффект изобарно-изотермической реакции

С(к) + СО2(г) = 2СО(г)

при 298 К и при 1000 К , считая постоянными теплоемкости реагентов в данном температурном интервале.

Решение. Запишем значения стандартной энтальпии образования и стандартной теплоемкости веществ согласно данным (Приложение 2, [1] ):

Вещество ΔfН0298,кДж/моль С0р298, Дж/моль.К

С(графит) 0 8,54

СО2 (г) −393,5 37,41

СО (г) −110,5 29,14

Для расчета энтальпии химической реакции при с.с. и 298 К воспользуемся следствием из закона Гесса:

ΔrН0298= ∑νiΔf Н0298, продуктов − ∑νjΔf Н 0298, исх веществ ;

ΔrН0298 = 2ΔfН0298СОг − ΔfН0298Ск − ΔfН0298СО2г = 2(−110,5) – 0 – (−393,5) =

= 172,5 кДж. Так как ΔrН0298 > 0, данная реакция эндотермическая.

Зависимость энтальпии реакции от температуры в области 298 ÷Т, в которой нет фазовых переходов, в интегральном виде выражается уравнением Кирхгофа:

Т

rH0T = ∆rH0298 + ∫ ∆rС0pdT ,

298

где ∆rН0298 − стандартная энтальпия реакции при 298К; ∆rСp0 − изменение стандартной теплоемкости системы в ходе реакции.

Если пренебречь зависимостью Ср реагирующих веществ от Т, то есть

rС0p = const, то имеем приближение в виде:

rН0Т = ∆rН0298 + ∆rС0р(Т − 298) ,

рассчитать ∆С0р можно по справочным данным, как разность стандартных изобарных теплоемкостей продуктов и исходных веществ при 298 К.

Рассчитаем изменение теплоемкости системы в результате реакции:

rС0р = 2С0р298СОг – С0р298Ск – С0р298СО2г = 2(29,14) – 8,54 – 37,41 = 12,33 Дж/К.

По уравнению

rН0Т = ∆rН0298 + ∆rС0р(Т − 298)

рассчитаем энтальпию химической реакции при с.с. и 1000 К:

rН01000 = 172,5 + 12,33·10−3(1000 − 298) = 172,5 + 8,66 = 181,16 кДж.

Из расчетов следует, что при изменении температуры на 702 К увеличение теплового эффекта составляет всего около 5%.

Пример 6. Расчет тепла, выделенного в результате химической реакции.

Определите энтальпию процесса конденсации воды. Рассчитайте, сколько тепла выделится при образовании 1 м3 жидкой воды из пара при стандартных состояниях вещества.

Решение. Конденсация – это процесс перехода из газообразного состояния в жидкое, который относится к фазовым превращениям. Запишем уравнение конденсации для воды:

Н2О(г) = Н2О(ж).

Энтальпию этого превращения рассчитываем по следствию из закона Гесса, используя данные табл. (Приложение 2, [1]):

ΔrН0298= ∑νiΔf Н0298, продуктов − ∑νjΔf Н 0298, исх веществ ;

rН0298 = ∆fН0298Н2Ож – ∆fН0298Н2Ог = −285,84 – (−241,84) = −44 кДж.

Так как ΔrН0298 < 0, процесс конденсации экзотермический.

Энтальпии химической реакции ΔrН равна тепловому эффекту этого процесса, протекающего в изобарно-изотермических условиях (Qp,T):

Qp,T = - ΔrHТ.

Определим количество вещества Н2О, содержащееся в 1 м3. Так как плотность воды ρ = 1 г/см3, то масса 1м3 воды: m = ρV = 1·106 г.

Количество молей Н2О νН2О = m/MН2О = 106/18 = 5,56·104 моль.

Поскольку при конденсации 1 моля воды выделяется 44 кДж тепла, то при конденсации 5,56·104 молей выделится

Q = 44·5,56·104 = 2,45·106 кДж тепла.

Пример 7.Расчет удельной теплоты сгорания газового топлива.

Вычислить удельную теплоту сгорания газового топлива, содержащего 60% Н2 и 40% СН4, если известны теплоты сгорания газов: П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru = –286 кДж/моль; П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru = –890 кДж/моль.

Решение. Термохимические уравнения процессов сгорания водорода и метана:

Н2(г) + ½О2(г) → Н2О(ж); П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru = –286 кДж/моль;

СН4(г) + 2О2(г) → СО2(г) + 2Н2О(ж) ; П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru = –890 кДж/моль.

Теплота сгорания топлива может быть рассчитана по следствию из закона Гесса:

ΔrН0Т = ∑νiΔfНi0 продуктов − ∑νjΔfНj 0исх веществ .

Удельная теплота сгорания газа QТ равна количеству теплоты, выделяющейся при сгорании 1м3 газообразного вещества до образования высших оксидов.

По условию задачи 1м3 данного газового топлива содержит 600 л Н2 и 400 л СН4, что составляет соответственно 600/22,4 молей Н2 и 400/22,4 молей СН4. (использовали молярный объем газа при нормальных условиях 22,4 л/моль).

В соответствии с уравнением:

Qт = –DНсгор×(1000/22,4),

рассчитаем удельную теплоту сгорания газового топлива:

Qт = 286×(600/22,4) + 890×(400/22,4) = 7660,7 + 15892,8 = 23550 кДж/м3.

П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса.

Определение термодинамической возможности самопроизвольного протекания химической реакции в заданном направлении. Определение температурной области самопроизвольного протекания химической реакции.

Пример 1.Расчет стандартной энтропии химической реакции при различных температурах.

Рассчитайте стандартную энтропию химической реакции

С(к) + СО2(г) = 2СО(г)

при 298 К и при 1000 К, считая постоянными теплоемкости компонентов в рассматриваемом температурном интервале.

Решение. Энтропия S – функция состояния системы, которая служит мерой неупорядоченности этой системы, измеряется в Дж/(моль·К).

Согласно данным табл. (см. Приложение IV, [2]; Приложение 4, [3] ):

Вещество f S0298, Дж/(моль·K) С0р298, Дж/(моль·К)

С(графит) 5,74 8,54

СО2 (г) 213,68 37,41

СО (г) 197,54 29,14

Стандартная энтропия химической реакции при с.с. ( П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru и П 6. Расчет энтропии химической реакции. Расчет энергии Гиббса. - student2.ru моль/л) и 298 К, обозначается ∆rS0298 и рассчитывается по уравнению (следствие из закона Гесса):

ΔrS0298 = ∑νi fS0298,i продуктов − ∑νj fS0298,j исх. веществ ,

где f S0298 - стандартная энтропия образования веществ при 298 К (см. Приложение IV, [2]; Приложение 4, [3] ); νi - стехиометрические коэффициенты уравнения химической реакции.

Рассчитаем:

ΔrS0298 = 2S0298,СОг − S0298,Ск − S0298,СО2г = 2(197,54) – 5,74 – 213,68 =

= 175,66 Дж/K.

То есть данная реакция при 298 К идет с увеличением энтропии, что и следовало ожидать, так как число молей газообразных веществ в результате реакции увеличивается.

Зависимость энтропии реакции от температуры в области 298 ÷Т, в которой нет фазовых переходов, в интегральном виде выражается уравнением

Т

rS0T = ∆rS0298 + ∫ (∆rС0p/Т)dT ,

298

где ∆rS0298 − стандартная энтропия реакции при 298 К; ∆rС0p − изменение суммарной стандартной теплоемкости системы в ходе реакции.

Рассчитаем изменение стандартной теплоемкости системы в результате реакции:

r С0 р= 2С0р 298СОг – С0р 298Ск – С0р 298СО2г = 2.(29,14)–8,54–37,41 =12,33 Дж/К.

Для многих реакций можно пренебречь зависимостью Ср реагирующих веществ от Т, то есть ∆rС0p = const. Тогда имеем приближение в виде:

rS0T = ∆rS0298 + ∆rС0р(lnТ − ln298).

По этому уравнению рассчитаем

rS01000 = 175,66 + 12,33ln(1000/298) = 175,66 + 14,93 = 190,59 Дж/К.

Как следует из расчетов, увеличение энтропии реакции, обусловленное ростом суммарной теплоемкости системы, при изменении температуры на 702 К составляет около 8,5%.

Пример 2. Расчет энергии Гиббса химической реакции при стандартном состоянии и различных температурах. Возможное направление самопроизвольного протекания процесса.

Рассчитайте стандартную энергию Гиббса химической реакции

С(к) + СО2(г) = 2СО(г)

при 298 К и при 1000 К. Сделайте вывод о возможности самопроизвольного протекания этой реакции при указанных температурах и стандартных состояниях всех компонентов.

Решение.Направление любого процесса определяется соотношением энтальпийного ∆rН и энтропийного Т∆rS факторов реакции.

Энергия Гиббса,или свободная энергия G - функция состояния системы, учитывающая совместное влияние этих факторов, G = H – TS.

Однозначный критерий возможности самопроизвольного протекания реакции в прямом направлении в изобарно-изотермических условиях:

rGТ = (∆rHТ – T∆rSТ) < 0 .

1). Для начала, будем считать, чтоэнтальпия и энтропия реакции не зависят от температуры. В широком интервале температур в первом приближении можно считать неизменной величину стандартной теплоемкости веществ в ходе химической реакции ∆rС0p = 0 , тогда

rН0T = ∆rН0298 и ∆rS0T = ∆rS0298 .

Для расчета применим приближенную формулу расчета энергии Гиббса

rG0Т = ∆rH0298 − T∆rS0298 .

Используем данные, полученные в Примере 1. ( ΔrS0298 = 175,66 Дж/K) и в Примере 5. предыдущего практического занятия (ΔrН0298 = 172,5 кДж).

rG0298 = 172,5 – 298·175,66·10−3 = 120,15 кДж, то есть ∆rG0298> 0;

rG01000 = 172,5 – 1000·175,66·10−3 = −3,16 кДж, то есть ∆rG01000< 0.

Таким образом, при 298 К и стандартных состояниях веществ самопроизвольное протекание указанной реакции в прямом направлении невозможно (энтальпийный фактор не способствует самопроизвольному протеканию прямой реакции и определяет знак энергии Гиббса реакции при низких температурах). При высоких температурах определяющим становится энтропийный фактор реакции, он определяет отрицательное значение энергии Гиббса реакции при 1000 К и, следовательно, возможность самопроизвольного протекания реакции при этой температуре и стандартных состояниях компонентов.

2). Для более точного расчета ∆rG01000сначала рассчитаем изменение стандартной теплоемкости системы в ходе реакции:

r С0 р= 2С0р 298СОг – С0р 298Ск – С0р 298СО2г = 2.(29,14)–8,54–37,41 =12,33 Дж/К.

Значение стандартной ∆rG0Т для любой температуры Т можно в общем случае рассчитать с использованием справочных данных по уравнению:

Т Т

rG0Т = ∆rH0Т −T∆rS0Т = ∆rH0298 + ∫ ∆rС0pdT + Т∆rS0298 + Т ∫ (∆rС0p/T)dT .

298 298

Для многих реакций можно пренебречь зависимостью Ср реагирующих веществ от Т, то есть ∆rС0p = const. Тогда имеем приближение в виде:

rG0T = ∆rG0298 + ∆rС0р(Т − 298) - T.rС0р(lnТ − ln298).

Для расчета ∆rG01000используем это приближение:

rG01000= ∆rG0298 + ∆rС0р(Т − 298) - T.rС0р(lnТ − ln298) =

= 120150 +12,33. (1000-298) – 1000.12,33(ln1000 − ln298) =

= -9430 Дж = -9,43 кДж, то есть ∆rG01000< 0.

Как видно, имеется различие в значениях стандартной энергии Гиббса ∆rG0T, рассчитанной по разным методикам.

Пример 3. Определение температурной области самопроизвольного протекания реакции.

Определите температурную область самопроизвольного протекания реакции

С(к) + СО2(г) = 2СО(г)

при стандартных состояниях компонентов.

Решение. Реакция может протекать самопроизвольно при стандартных состояниях компонентов в определенной области температур, для которых ∆rG0Т < 0.Чтобы найти эту область температур нужно определить граничную температуру (температуру равновесия), при которой значение ∆rG0Т меняет знак, то есть необходимо решить неравенство относительно Т:

rG0Т = ∆rH0298 + ∫Т298rС0pdT + Т∆rS0298 + Т∫Т298(∆rС0p/T)dT < 0.

Если пренебречь зависимостью ∆rH0 и ∆rS0от температуры, то граничную температуру (температуру равновесия) можно определить из приближенного неравенства:

rG0Т = ∆rH0298 − T∆rS0298< 0.

Подставляя в это выражение значения ΔrН0298 = 172,5 кДж и

ΔrS0298 = 175,66 Дж/K, (см. Пример 3) , получаем:

rG0Т =(172,5 – Т·175,66·10−3) < 0.

Откуда Т > 982 К. Верхним пределом искомой температурной области является предел существования наименее устойчивого компонента реакции, который находится из справочных данных.

Вещество Температурный интервал, К

Наши рекомендации