Законы Фарадея (законы электролиза)

Связь между количеством выделившегося при электролизе веществ и количеством электричества, прошедшего через электролит, выражается двумя законами Фарадея.

Первый закон Фарадея. Масса вещества, выделившегося на электроде при электролизе, прямо пропорциональна количеству электричества, прошедшего через электролит:

m = kQ,

где m — масса вещества, г; k – электрохимический эквивалент, т.е. масса вещества, выделившаяся при прохождении одного кулона электричества, г/Кл; Q – количество электричества, Кл (Q = It, где I — сила тока, t — время, с).

Второй закон Фарадея. Одинаковое количество электричества выделяет при электролизе на электродах эквивалентные массы различных веществ. Для выделения одного моля эквивалента любого вещества необходимо затратить одно и то же количество электричества, а именно 96485 Кл, называемое числом Фарадея.

Тогда электрохимический эквивалент:

Законы Фарадея (законы электролиза) - student2.ru ,

где Mэкв — молярная масса химического эквивалента вещества (иона)*, г/моль экв.

Из первого и второго законов Фарадея вытекает объединенное уравнение:

Законы Фарадея (законы электролиза) - student2.ru ;

Законы Фарадея (законы электролиза) - student2.ru . (4)

Примеры решения задач

Пример 1. Написать уравнения электрохимических процессов, происходящих на аноде (анод инертный) и катоде при электролизе раствора бромида меди (II).

Решение. В водном растворе CuBr2 диссоциирует следующим образом:

CuBr2 ←→ Cu2+ + 2Br.

Стандартный электродный потенциал водородного электрода в нейтральной водной среде:

2H2O + 2ē → H2↑ + 2OH(–0,41В).

Это значительно отрицательнее потенциала системы:

Cu2+ + 2e → Cu0 (+0,34В).

Поэтому на катоде будет происходить электрохимическое осаждение меди:

Cu2+ + 2ē → Cu0.

На аноде будет происходить окисление ионов брома, приводящее к выделению газообразного брома:

Br – ē → Br0 ;

2Br0 → Br2↑;

поскольку электрохимическое окисление воды:

2H2O – 4e → O2↑ + 4H+

из нейтральных сред может протекать при потенциалах не менее (+1,23 В), что выше стандартного электродного потенциала, характеризующего выделение газообразного брома (+1,07 В).

Пример 2. Написать уравнения электрохимических процессов, происходящих на аноде и катоде при электролизе раствора сульфата натрия (анод инертный).

Решение. В водном растворе Na2SO4 диссоциирует следующим образом:

Na2SO4 ←→ 2Na+ + SO42–.

Стандартный электродный потенциал системы:

Na+ + ē → Na0 (–2,71 В)

значительно отрицательнее потенциала водородного электрода в нейтральной среде (–0,41 В). Поэтому на катоде будет происходить электрохимическое разложение воды с выделением водорода:

2H2O + 2ē → H2↑ + 2OH,

а ионы натрия, приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство).

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2H2O – 4e → O2↑ + 4H+,

поскольку отвечающей этой системе стандартный электродный потенциал (+1,23 В) значительно ниже, чем стандартный электродный потенциал (+2,01 В), характеризующий систему:

2SO42– – 2ē → S2O82–.

Сульфат-ионы, движущиеся при электролизе к аноду, будут накапливаться в анодном пространстве.

Пример 3. Написать уравнения электрохимических процессов, происходящих на катоде и аноде при электролизе раствора сульфата цинка с цинковым анодом.

Решение. В водном растворе ZnSO4 диссоциирует следующим образом:

ZnSO4 ←→ Zn2+ + SO42–.

Стандартный электродный потенциал системы:

Zn2+ + 2ē → Zn0 (–0,76 В)

близок к потенциалу водородного электрода в нейтральной водной среде (– 0,41 В), поэтому на катоде будут совместно протекать два процесса восстановления:

Zn2+ + 2ē → Zn0;

2H2O + 2ē → H2↑ + 2OH.

На аноде возможно протекание трех окислительных процессов: электрохимического окисления воды, приводящего к выделению кислорода (+1,23 В), окисления сульфат-ионов (+2,01 В) и окисления материала анода, т.е. цинка (–0,76 В). Сравнение электродных потенциалов систем позволяет сделать вывод об окислении анода и выделении ионов цинка в раствор:

Zn0 – 2ē → Zn2+.

Пример 4. Определить массу цинка, которая выделится на катоде при электролизе сульфата цинка в течение одного часа при токе 26,8 А, если выход по току цинка равен 50 %.

Решение. Расчет ведем согласно объединенному уравнению из законов Фарадея (4). Масса моля эквивалента (химический эквивалент вещества) цинка в ZnSO4 равна (65,38 / 2) = 32,69 г/моль экв. Не забыв выразить время в секундах, подставим в уравнение закона Фарадея все известные значения и определим массу цинка, которая должна выделиться (при условии, если весь ток будет израсходован на выделение цинка):

m = (32,69 ∙ 26,8 ∙ 3600) / 96485 = 32,69 г.

Так как выход по току цинка составляет 50%, то практически на катоде выделится цинка:

mпр = 32,69 ∙ (50/100) = 16,345 г.

Пример 5. Рассчитать ток при электролизе раствора в течение 1 ч 40 мин 25 с, если на катоде выделилось 1,4 л водорода, измеренного при нормальных условиях.

Решение. Из формулы (4) выразим силу тока:

Законы Фарадея (законы электролиза) - student2.ru .

Так как количество водорода дано в единицах объема, то отношение m/Э заменяем отношением VH2/Vэкв H2 , где VH2— объем водорода, л; Vэкв H2— объем одного моля эквивалента водорода.
Объем моля эквивалента водорода при нормальных условиях равен половине моля молекул водорода Vэкв H2= 22,4/2 = 11,2 л, так как моль любого газа в нормальных условиях занимает объем, равный 22,4 л, а в процессе электрохимического восстановления водорода участвуют два электрона. Подставив в приведенную формулу числовые значения, получим:

Законы Фарадея (законы электролиза) - student2.ru = 2 А.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Содержание работы:

1. После ознакомления с теоретическим материалом выполнить опыты и записать наблюдения.

2. Во всех опытах записать процессы окисления и восстановления на катоде и аноде и суммарную окислительно-восстано­вительную реакцию, происходящую в результате электролиза.

Опыт 1. Электролиз раствора серной кислоты
с медным анодом

Налить в стакан до ¾ его объема (до метки) 1 М раствор серной кислоты H2SO4. Закрыть стакан крышкой, в которой закреплены угольный и медный электроды, погрузив электроды в раствор. Подключить вилку с проводами от электродов к розетке, соединенной с аккумулятором, в соответствии с обозначениями «+» и «–» на вилке и розетке. Угольный электрод соединен с отрицательным полюсом источника тока (катод), медный электрод — с положительным полюсом (анод). Наблюдать за процессом, протекающем на катоде во время электролиза, и за поведением анода. Обратить внимание на то, что в начале опыта на катоде выделяются пузырьки газа. Затем, по мере окрашивания раствора в голубой цвет, скорость выделения газа уменьшается и одновременно катод начинает покрываться слоем меди. Дать объяснение этим явлениям. Составить уравнения реакций, протекающих на катоде и аноде. После опыта промыть стакан и электроды под струей воды из крана.

Опыт 2. Электролиз раствора иодида калия
с нерастворимым анодом

Налить в U-образную трубку 0,5 М раствор иодида калия. Вставить в оба колена трубки угольные электроды. Подключить вилку с проводами от электродов к розетке в соответствии с обозначениями на вилке и розетке. Если по проводам нельзя установить, какой из электродов соединен с отрицательным полюсом, а какой с положительным, это можно сделать по наблюдаемым процессам. В анодном пространстве наблюдается появление желтой окраски (выделяется свободный Br2). На катоде происходит выделение пузырьков газа.

В катодное пространство добавить несколько капель фенолфталеина и наблюдать появление малиновой окраски раствора. Составить уравнения реакций, протекающих на электродах. После опыта промыть трубку и электроды.

Опыт 3.Электролиз раствора сульфата натрия
с нерастворимым анодом

Налить в U-образную трубку 0,5 М раствор сульфата натрия. Вставить в оба колена трубки угольные электроды. Подключить вилку с проводами от электродов к розетке в соответствии с обозначениями на вилке и розетке. Если по проводам нельзя установить, какой из электродов является анодом, а какой катодом, сделать это по наблюдаемым процессам.

На обоих электродах наблюдается выделение пузырьков газа. Через три-четыре минуты после начала процесса в катодное и анодное пространства добавить по нескольку капель фиолетового лакмуса. В катодном пространстве лакмус окрасится в синий цвет, а в анодном пространстве приобретет красную окраску. Составить уравнения реакций, протекающих на электродах. После опыта промыть трубку и электроды.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называется электролизом?

2. Какие процессы протекают на катоде и аноде при проведении электролиза?

3. Какова последовательность разряда ионов при электролизе на катоде? На аноде?

4. Как протекает электролиз с растворимым и нерастворимым анодами?

5. Какие процессы окисления и восстановления протекают на катоде и аноде при электролизе водного раствора хлорида никеля, если: а) анод угольный и б) анод никелевый?

6. Какие процессы окисления и восстановления протекают на катоде и аноде при электролизе водных растворов KNO3, AgBr, CdSO4, если анод платиновый?

7. Сколько граммов меди выделится на катоде при электролизе раствора CuSO4 в течение 1 часа при силе тока 4 А, если выход по току составляет 70%?

8. Вычислить эквивалент металла, зная, что при электролизе раствора хлорида этого металла затрачено 3880 Кл электричества и на катоде выделилось 11,742 г металла.


ЛАБОРАТОРНАЯ РАБОТА
«КОРРОЗИЯ МЕТАЛЛОВ»

Цель работы: изучение процессов химической и окислительно-восстановительной коррозии металлов

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Общие положения

Коррозия металлов (от лат. corrosio — разъедание) — самопроизвольный процесс разрушения металлов в результате физико-химического взаимодействия с окружающей средой.

Коррозия металлов — нежелательный процесс, в результате которого происходит потеря значительного количества металла. Еще больший вред приносит выход из строя металлических конструкций, сложной аппаратуры и приборов. Существенными бывают и косвенные потери, к которым можно отнести утечки нефти и газа из подвергающихся коррозии трубопроводов, простой оборудования и т. д. Изучение причин, вызывающих коррозию, и установление влияния различных факторов на скорость коррозии имеют своей практической целью защиту металлов и сплавов от коррозионного разрушения при их обработке и эксплуатации.

Наши рекомендации