Тема 2. Негативные факторы в системе «человек-среда обитания». Воздействие негативных факторов на человека и среду обитания


1 Производственная вибрация.

2 Производственный шум.

3 Производственная пыль.

4 Вредные вещества.

5 Электромагнитные поля и неионизирующие излучения.

6 Лазерное излучение.

7 Ионизирующие излучения.


Совокупность и уровень различных факторов производственной среды существен­но влияют на условия труда, состояние здоровья и заболеваемость работающих. При оп­ределенном сочетании и невысоких (нормативных) значениях этих факторов человек чув­ствует себя комфортно. При других со­четаниях и уровнях, превышающих нормативные, вследствие проведения недостаточного объема необходимых профилактических мероприятий, эти факторы могут оказывать неблагоприятное влияние, нарушать течение нормальных физиологических процессов в организме, способ­ствуя возникновению тех или иных патологических процессов.

Особенности возникающих при этом негативных изменений в организме и мер по их предупреждению определяются характером воздействующего вредного фактора производственной среды, что требует специального, более детального рассмотрения данного вопроса применительно к отдельным профессиональным вредностям, наиболее распро­страненным в производственных условиях. Негативным факторам, их воздействию на человеческий организм, средствам и способам снижения их негативного влияния посвящена данная лекция.

^ 1 Производственная вибрация
В соответствии с ГОСТ 24346-80 (СТ СЭВ 1926-79) «Вибрация. Термины и определения» под вибрацией понимается движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений по крайней мере одной координаты. Причиной возбуждения вибраций являются возникающие при работе машин и агрегатов неуравновешенные силовые воздействия. Источники вибраций - возвратно-поступательно движущиеся системы (кривошипно-шатунные механизмы, ручные перфораторы, пломбиры, вибротрамбовки, приборы для упаковки товаров и пр.), а также неуравновешенные вращающиеся массы (электрические и пневматические шлифовальные и режущие машины, режущие инструменты). Иногда вибрацию создают удары взаимодействующих деталей в зубчатых зацеплениях, подшипниковых узлах и дру­гих механизмах. Наличие дисбаланса приводит к появлению неуравновешенных сил, вы­зывающих вибрацию. Причиной дисбаланса может быть неоднородность материала вращающегося тела, несовпадение центра массы тела и оси вращения, деформация деталей от неравномерного нагрева при горячих и холодных посадках и т. д.
Основными параметрами вибрации, происходящей по синусоидальному закону, являются: частота, амплитуда смещения, скорость, ускорение, период колебания (время, в течение которого совершается одно полное колебание).
В производственных условиях почти не встречается вибрации в виде простых га­монических колебаний. При работе машин и оборудования обычно возникает сложное колебательное движение, которое является апериодическим или квазипериодическим, имеющим импульсный или толчкообразный характер.
В зависимости от контакта работника с вибрирующим оборудованием различают местную (локальную) и общую вибрацию (вибрацию рабочих мест). Вибрация, воздействующая на отдельные части организма работающего, определяется как местная. Вибрация рабочего места, воздействующая на весь организм, определяется как общая. В производственных условиях часто встречается одновременно местная и общая вибрация, которая называется смешанной вибрацией.
Смешанное воздействие с преобладанием местной вибрации возникает при работе ряда ручных машин, когда колебательные движения инструмента, машины передаются телу не только через верхние, но и через нижние конечности, грудь, спину, что зависит от рабочей позы и конструкции инструмента.
Общая вибрация преобладает, например, при работе водителей на подъемно-транспортных и погрузочно-разгрузочных машинах.
^ Воздействие вибрации на организм человека
Тело человека рассматривается как сочетание масс с упругими элементами, имеющими собственные частоты, которые для плечевого пояса, бедер и головы относительно опорной поверхности (положение «стоя») составляют 4-6 Гц, головы относительно плеч (положение «сидя») - 25-30 Гц. Для большинства внутренних органов собственные частоты лежат в диапазоне 6-9 Гц. Общая вибрация с частотой менее 0,7 Гц, определяемая как качка, хотя и неприятна, но не приводит к вибрационной болезни. Следствием такой вибрации является морская болезнь, вызванная нарушением нормальной деятельности вестибулярного аппарата по причине резонансных явлений.
При частоте колебаний рабочих мест, близкой к собственным частотам внутренних органов, возможны механические повреждения или даже разрывы. Систематическое воз действие общих вибраций, характеризующихся высоким уровнем виброскорости, приводит к вибрационной болезни, которая характеризуется нарушениями физиологических функций организма, связанными с поражением центральной нервной системы. Эти нарушения вызывают головные боли, головокружения, нарушения сна, снижение работоспособности, ухудшение сердечной деятельности.
Особенности воздействия вибрации определяются частотным спектром и расположением в его пределах максимальных уровней энергии колебаний. Местная вибрация малой интенсивности может благоприятно воздействовать на организм человека, восстанавливать трофические изменения, улучшать функциональное состояние центральной нервной системы, ускорять заживление ран и т. п.
При увеличении интенсивности колебаний и длительности их воздействия возникают изменения, приводящие в ряде случаев к развитию профессиональной патологии - вибрационной болезни.
Ручные машины, вибрация которых имеет максимальные уровни энергии в низких частотах (до 35 Гц), вызывают вибрационную патологию с преимущественным поражением нервно-мышечного и опорно-двигательного аппарата. При работе с ручными машинами, вибрация которых имеет максимальный уровень энергии в высокочастотной области спектра (выше 125 Гц), возникают сосудистые расстройства с наклонностью к спазму периферических сосудов. При воздействии вибрации низкой частоты заболевание возникает через 8-10 лет, при воздействии высокочастотной вибрации - через 5 и менее лет.
^ Допустимые уровни вибрации
Различают гигиеническое и техническое нормирование вибраций. Гигиенические ограничивают параметры вибрации рабочих мест и поверхности контакта с руками работающих, исходя из физиологических требований, исключающих возможность возникно­вения вибрационной болезни. Технические ограничивают параметры вибрации не только с учетом указанных требований, но и исходя из достижимого на сегодняшний день для данного типа оборудования уровня вибрации. Разработаны законодательные документы, устанавливающие допустимые значения и методы оценки характеристик вибраций (ГОСТ 12.1.012-78. Система стандартов безопасности труда.).
Масса вибрирующего оборудования или его частей, удерживаемых руками, не| должна превышать 10 кг, а усилие нажима - 20 кг.
Общая вибрация нормируется с учетом свойств источника ее возникновения и делится на вибрацию:
-транспортную, которая возникает в результате движения машин по местности и дорогам;
-транспортно-технологическую, которая возникает при работе машин, выполняющих технологическую операцию в стационарном положении, а также при перемещении по специально подготовленной части производственного помещения, промышленной площадке или на оптовых базах;
- технологическую, которая возникает при работе стационарных машин или передается на рабочие места, не имеющие источников вибраций.
Высокие требования предъявляют при нормировании технологических вибраций в помещениях для умственного труда (диспетчерская, бухгалтерия и т. п.). Гигиенические нормы вибрации установлены для рабочего дня длительностью 8 ч.
Анализ последствий воздействия вибраций, встречающихся на предприятиях, свидетельствует об отрицательном влиянии их на физиологические функции организма работающих. Длительно и интенсивно воздействуя на человека, она приводит к нарушению деятельности нервной системы, головокружениям и головной боли, расстройствам зрения, онемению и отечности пальцев рук, заболеванию суставов, снижению чувствительности и другим патологическим изменениям. Эти изменения могут прогрессировать и привести квибрационной болезни и полной потере трудоспособности.
Амплитуда и частота вибрации существенно влияют на тяжесть заболевания и при определенных величинах вызывают вибрационную болезнь.
Тема 2. Негативные факторы в системе «человек-среда обитания». Воздействие негативных факторов на человека и среду обитания - student2.ru ^ Методы снижения уровня вибраций машин и оборудования
Причинами вибрации могут быть неправильная установка и эксплуатация машин и оборудования, неравномерный износ отдельных узлов.
Вибродемпфирование производится с помощью использования композиционных материалов: сталь - алюминий, сталь - медь, а также пластмасс, древесины или резины. Широкое распространение получили вибродемпфирующие покрытия, которые в зависимости от величины динамического модуля упругости подразделяются на жесткие и мягкие. Первые эффективны в области низких частот, вторые - высоких.
Наиболее эффективны покрытия из вязкоупругих материалов, к которым относятся твердая пластмасса, рубероид, изол, битуминизированный войлок со слоем фольги.
К мягким вибродемпфирующим покрытиям относятся мягкие пластмассы, резины, пенопласт и др.

Эффективный способ виброгашения - установка динамических виброгасителей, уменьшающих уровень вибраций защищаемого объекта. Недостатком такого способа гашения колебаний является то, что он эффективен только при определенной частоте, соответствующей резонансной частоте колебаний агрегата.
К техническим мероприятиям, снижающим виброизоляцию, относится создание новых конструкций инструментов и машин, вибрация которых не должна выходить за пределы безопасной для человека, а усилие, прикладываемое руками работающего к ручной машине, должно быть пределах 15-20 кг. В таких конструкциях снижение вибрации достигается за счет увеличения жесткости системы с помощью введения ребер жесткости.
Виброизоляция обеспечивает снижение вибрации за счет уменьшения передачи ко­лебаний от агрегата к защищаемому объекту путем установки между ними дополнитель­ных устройств.

^ 2 Производственный шум
В различных отраслях экономики, на предприятиях и фирмах имеются источники шума - это оборудование, машины, работа которых сопровождается шумом, людские потоки. Постоянно находящийся в этих условиях персонал: рабочие, операторы подвергают­ся воздействию шума, вредно действующего на их организм и снижающего произво­дительность труда. Длительное воздействие шума может привести к развитию такого профессионального заболевания, как шумовая болезнь.
^ Шум как гигиенический фактор представляет собой совокупность звуков, неблагоприятно воздействующих на организм человека, мешающих его работе и отдыху.
По физической сущности шум представляет собой волнообразно распространяющееся колебательное движение частиц упругой (газовой, жидкой или твердой) среды. Источником шума является любое колеблющееся тело, выведенное из устойчивого состояния внешней силой.
Слышимые звуки: 20 - 20 000 Гц. Ультразвуковой диапазон - свыше 20 кГц. Инфразвук - меньше 20 Гц. Устойчиво слышимые звуки - 1000 Гц - 3000 Гц.
Как и для всякого волнообразного колебательного движения, основными параметрами, характеризующими звук, являются амплитуда колебания, скорость распространения и длина волны.
Непосредственно примыкающие к источнику колебания частицы среды вовлекаются в колебательный процесс и смещаются, приходя в состояние ритмичного сгущения и разрежения. Этот процесс в силу упругости среды распространяется последовательно в виде волны, образуя звуковое поле. Амплитуда колебаний пропорциональна амплитуде смещения частиц проводящего тела, т. е. звукового давления, которое представляет собой переменное давление, возникающее дополнительно к атмосферному, в той среде, через которую проходят звуковые волны. Оно выражается в дин/см.. В фазе сжатия звуковое давление положительно, в фазе разрежения - отрицательно. От величины звукового давления зависит сила звука - шум.
Частота колебаний - число полных колебаний, совершенных в течение одной секунды. Единица измерения частоты - герц (Гц) равна одному колебанию в секунду. Расстояние, на которое в течение одной секунды может распространиться волновой процесс, называется скоростью звука. При температуре воздуха 20° С и нормальном атмосферном давлении скорость звука равна 334 м/с, при повышении темпе­ратуры она увеличивается примерно на 0,71 м/с на каждый градус.
Величины звукового давления и интенсивности звука, с которыми приходится иметь дело в практике борьбы с шумом, могут меняться в широких пределах по давлению и по интенсивности. Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности звука, называется белом (Б).
Для удобства пользуются не белом, а единицей в 10 раз меньшей - децибелом (дБ), который соответствует минимальному приросту силы звука, различаемо­му человеческим ухом.
Таким образом, бел и децибел - это условные единицы, которые показывают, на­сколько данная интенсивность звука в логарифмическом масштабе больше интенсивности звука, соответствующей условному порогу слышимости. Измеряемые таким образом ве­личины называются уровнями интенсивности шума или уровнями звукового давления.

Интенсивность звука определяется по логарифмической шкале громкости. В шкале-140 дБ. За нулевую точку шкалы принят «порог слышимости» (слабое звуковое ощуще­ние, едва воспринимаемое ухом, равное примерно 20 дБ), а за крайнюю точку шкалы -140 дБ - максимальный предел громкости.
Громкость ниже 80 дБ обычно не влияет на органы слуха, громкость от 0 до 20 дБ - очень тихая; от 20 до 40 - тихая; от 40 до 60 - средняя; от 60 до 80 - шумная; выше 80 дБ - очень шумная.
Распространение звуковых волн сопровождается появлением ряда акустических факторов, имеющих важное значение для характеристик шума, рассмотренных выше, ги­гиенической оценки шума и выбора мер защиты.
^ Действие шума на организм человека
К настоящему времени накоплены многочисленные данные, позволяющие судить о характере и особенностях влияния шумового фактора на слуховую функцию. Течение функциональных изменений может иметь различные стадии. Кратковременное понижение Тема 2. Негативные факторы в системе «человек-среда обитания». Воздействие негативных факторов на человека и среду обитания - student2.ru остроты слуха под воздействием шума с быстрым восстановлением функции после пре­кращения действия фактора рассматривается как проявление адаптационной защитно-приспособительной реакции слухового органа. Адаптацией к шуму принято считать вре­менное понижение слуха не более чем на 10-15 дБ с восстановлением его в течение 3 мин после прекращения действия шума. Длительное воздействие интенсивного шума может приводить к перераздражению клеток звукового анализатора и его утомлению, а затем к стойкому снижению остроты слуха.
Установлено, что утомляющее и повреждающее слух действие шума пропорционально его высоте (частоте). Наиболее выраженные и ранние изменения наблюдаются на частоте 4000 Гц и близкой к ней области частот. При этом импульсный шум (при одинаковой эквивалентной мощности) действует более неблагоприятно, чем непрерывный.
Особенности его воздействия существенно зависят от превышения уровня импульса над среднеквадратичным уровнем, определяющим шумовой фон на рабочем месте.
Развитие профессиональной тугоухости зависит от суммарного времени воздействия шума в течение рабочего дня и наличия пауз, а также общего стажа работы. Начальные стадии профессионального поражения наблюдаются у рабочих со стажем 5 лет, выраженные (поражение слуха на все частоты, нарушение восприятия шепотной и разговор ной речи) - свыше 10 лет.
Помимо действия шума на органы слуха, установлено его вредное влияние на многие органы и системы организма, в первую очередь, на центральную нервную систему, функциональные изменения в которой происходят раньше, чем диагностируется на­рушение слуховой чувствительности. Поражение нервной системы под действием шума сопровождается раздражительностью, ослаблением памяти, апатией, подавленным на­строением, изменением кожной чувствительности и другими нарушениями, в частности, замедляется скорость психических реакций, наступает расстройство сна и т. д. У работников умственного труда происходит снижение темпа работы, ее качества и производительности.
Действие шума может привести к заболеваниям желудочно-кишечного тракта, сдвигам в обменных процессах (нарушение основного, витаминного, углеводного, белкового, жирового, солевого обменов), нарушению функционального состояния сердечнососудистой системы. Звуковые колебания могут восприниматься не только органами слуха, но и непосредственно через кости черепа (так называемая костная проводимость). При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной пере­понки.
Таким образом, воздействие шума может привести к сочетанию профессиональной тугоухости (неврит слухового нерва) с функциональными расстройствами центральной нервной, вегетативной, сердечно-сосудистой и других систем, которые могут рассматриваться как профессиональное заболевание - шумовая болезнь. Профессиональный неврит слухового нерва (шумовая болезнь) чаще всего встречается у рабочих различных отраслей машиностроения, текстильной промышленности и пр. Случаи заболевания встречаются у лиц, работающих на ткацких станках, с рубильными, клепальными молотками, обслужи­вающих прессо-штамповочное оборудование, у испытателей-мотористов и других про­фессиональных групп, длительно подвергающихся интенсивному шуму. Шум на рабочих местах не должен превышать допустимых уровней, значения которых ведены в ГОСТ 12.1.003-76, соответствующие рекомендациям Технического комитета статистики при Международной организации по стандартизации.
Совокупность восьми допустимых уровней звукового давления называется предельным спектром. Исследования показывают, что допустимые уровни уменьшаются с ростом частоты (более неприятный шум).
Второй метод нормирования общего уровня шума, используется для ориентировочной оценки постоянного и непостоянного шума, так как этом случае мы не знаем спектра шума.
^ Снижение шума и вибрации достигается заменой возвратно-поступательного движения в узлах работающих механизмов равномерным вращательным.
При высоких тонах шумов эффективно демпфирование, при котором вибрирующая поверхность покрывается материалом с большим внутренним трением (резина, пробка, битум, войлок и др.). К демпфирующим материалам при этом предъявляются следующие требования: высокая эффективность, малая масса, способность прочно удерживаться на металле и предохранять его от коррозии.
При невозможности достаточно эффективного снижения шума за счет создания совершенной конструкции той или иной машины следует осуществлять его локализацию у места возникновения путем применения звукопоглощающих и звукоизолирующих кон­струкций и материалов. Воздушные шумы ослабляются установкой на машинах специальных кожухов или размещением генерирующего шум оборудования в помещениях с массивными стенами без щелей и отверстий. Для исключения резонансных явлений кожухи следует облицовывать материалами с большим внутренним трением.
Для снижения структурных шумов, распространяемых в твердых средах, применяются звуко- и виброизоляционные перекрытия. Ослабление шума достигается применением под полом упругих прокладок без жесткой их связи с несущими конструкциями зда­ний, установкой вибрирующего оборудования на амортизаторы или специальные изоли­рованные фундаменты. Вибрации, распространяющиеся по коммуникациям , ослабляются стыковкой последних через звукопоглощающие материалы (прокладки из резины и пластмассы). Широко применяются противошумные мастики на битумной основе, наносимые на поверхность металла.
Помимо мер технологического и технического характера, широко применяются средства индивидуальной защиты - антифоны, выполненные в виде наушников или вкладышей. Существует несколько десятков вариантов заглушек - вкладышей, наушников и шлемов, рассчитанных на изоляцию слухового прохода от шумов различного спек­трального состава. Наиболее удобными и эффективными считаются вкладыши из смеси волокон органической бактерицидной ваты и ультратонких полимерных волокон из мате­риала ФП («беруши»), позволяющие снизить уровень громкости шума на различных час­тотах от 15 до 31 дБ.

^ 3 Производственная пыль
Производственная пыль является одним из широко распространенных неблагопритных факторов, оказывающих негативное влияние на здоровье работающих. Целый ряд технологических процессов сопровождается образованием мелкораздробленных частиц твердого вещества (пыль), которые попадают в воздух производственных помещений и более или менее длительное время находятся в нем во взвешенном состоянии.
Пылеобразование происходит при дроблении, размоле, перетирке, шлифовке, сверлении, фасовке, упаковке, переработке сельхозпродукции, складской обработке грузов, погрузочно-разгрузочных операциях, транспортировке и т.д. Пыль образуется также в результате конденсации паров тяжелых металлов и других веществ.
Большая запыленность воздуха встречается в рудниках, на шахтах, фарфоро-фаянсовом производстве, цементных и литейных заводах, в цехах обработки металла, на оптовых базах, складах сыпучих товаров и сельхозпродуктов.
За последние годы с возрастанием спроса на услуги торговли, банков, предприятий сферы бытовых и других сервисных услуг появились крупные учреждения массового обслуживания населения (супер- и гипермаркеты, комбинаты сервисного обслуживания, косметические салоны, выставочные комплексы, залы для обслуживания клиентов финансовых предприятий), в которых движение больших людских и товарных потоков создает повышенное содержание пыли в помещениях.
^ Производственной пылью называют взвешенные в воздухе, медленно оседающие твердые частицы размерами от нескольких десятков до долей мкм. Многие виды произ­водственной пыли представляют собой аэрозоль, т. е. дисперсную систему, в которой дис­персной средой является воздух, а дисперсной фазой - твердые пылевые частицы.
По размеру частиц (дисперсности) различают видимую пыль размером более 10 мкм, микроскопическую - от 0,25 до 10 мкм, ультрамикроскопическую - менее 0,25мкм.
Согласно общепринятой классификации, все виды производственной пыли подразделяются на органические, неорганические и смешанные. Первые, в свою очередь, делятся на пыль естественного (древесная, хлопковая, льняная, шерстяная и др.) и искусственного (пыль пластмасс, резины, смол и др.) происхождения, а вторые - на металлическую (железная, цинковая, алюминиевая и др.) и минеральную (кварцевая, цементная, асбестовая и др.) пыль. К смешанным видам пыли относят каменноугольную пыль, содержащую частицы угля, кварца и силикатов, а также пыли, образующиеся в химических и других производствах. Специфика качественного состава пыли предопределяет возможность и характер ее действия на организм человека. Определенное значение имеют форма и консистенция пылевых частиц, которые в значительной мере зависят от природы исходного материала.
Так, длинные и мягкие пылевые частицы легко осаждаются на слизистой оболочке верхних дыхательных путей и могут стать причиной хронических трахеитов и бронхитов. Степень вредного действия пыли зависит также от ее растворимости в тканевых жидкостях.
^ Влияние пыли на организм. Неблагоприятное воздействие пыли на организм может быть причиной возникновения заболеваний. Обычно различают специфические (пневмокониозы, аллергические болезни) и неспецифические (хронические заболевания органов дыхания, заболевания глаз и кожи) пылевые поражения.
Среди специфических профессиональных пылевых заболеваний большое место за­нимают пневмокониозы- болезни легких, в основе которых лежит развитие склеро­тических и связанных с ними других изменений, обусловленных отложением различного рода пыли и последующим ее взаимодействием с легочной тканью.
Среди различных пневмокониозов наибольшую опасность представляет силикоз, связанный с длительным вдыханием пыли, содержащей свободную двуокись кремния. Силикоз - это медленно протекающий хронический процесс, который, как правило, развивается только у лиц, проработавших несколько лет в условиях значительного загрязнения воздуха кремниевой пылью. Однако в отдельных случаях возможно более быстрое возникновение и течение этого заболевания, когда за сравнительно короткий срок (2-4 го­да) процесс достигает конечной, терминальной, стадии.
Производственная пыль может оказывать вредное влияние и на верхние дыхатель­ные пути. Установлено, что в результате многолетней работы в условиях значительного запыления воздуха происходит постепенное истончение слизистой оболочки носа и задней стенки глотки. При очень высоких концентрациях пыли отмечается выраженная атро­фия носовых раковин, особенно нижних, а также сухость и атрофия слизистой оболочки верхних дыхательных путей.
^ Меры профилактики пылевых заболеваний. Эффективная профилактика профес­сиональных пылевых болезней предполагает гигиеническое нормирование, технологиче­ские мероприятия, санитарно-гигиенические мероприятия, индивидуальные средства за­щиты и лечебно-профилактические мероприятия.
^ Гигиеническое нормирование. Основой проведения мероприятий по борьбе с про­изводственной пылью является гигиеническое нормирование. Соблюдение установленных ГОСТом предельно допустимых концентраций (ПДК) - основное требование при прове­дении предупредительного и текущего санитарного надзора.

^ 4 Вредные вещества
Нерациональное применение химических веществ, синтетических материалов не­благоприятно влияет на здоровье работающих.
Вредное вещество (промышленный яд), попадая в организм человека во время его профессиональной деятельности, вызывает нарушения в обмене и физико-химической структуре клеток и тканей, в результате чего в организме воз­никают патологические изменения.В настоящее время известно около 7 млн. химических веществ, из которых 60 тыс. находят применение в деятельности человека. На международном рынке ежегодно появля­ется 500- 1000 новых химических соединений и смесей. Какие из этих новых веществ являются вредными, сказать сложно, но известных вредных веществ в мире насчитывается более 300 тысяч.
^ Вредными веществами (ядами) могут являться сырье, компоненты и готовая продукция. Заболевания, возникающие при воздействии этих веществ, называют профессиональными отравлениями (интоксикациями).
Яды наряду с общей обладают избирательной токсичностью, т. е. они представляют наибольшую опасность для определенного органа или системы организма. По избирательной токсичности выделяют яды:
-сердечные с преимущественным кардиотоксическим действи­ем; к этой группе относят многие лекарственные препараты, расти­тельные яды, соли металлов (бария, калия, кобальта, кадмия);
-нервные, вызывающие нарушение преимущественно психиче­ской активности (угарный газ, фосфорорганические соединения, ал­коголь и его суррогаты, наркотики, снотворные лекарственные препараты и др.);
-печеночные, среди которых особо следует выделить хлориро­ванные углеводороды, ядовитые грибы, фенолы и альдегиды;
-почечные - соединения тяжелых металлов этиленгликоль, ща­велевая кислота;
-кровяные - анилин и его производные, нитриты, мышьякови­стый водород;
-легочные - оксиды азота, озон, фосген и др.
На производстве токсические вещества поступают в организм человека через ды­хательные пути (ингаляционное проникновение), желудочно-кишечный тракт и кожу. Степень отравления зависит от их агрегатного состояния (газообразные и парообразные вещества, жидкие и твердые аэрозоли) и от характера технологического процесса (нагрев вещества, измельчение и др.).
Преобладающее большинство профессиональных отравлений связано с ингаляционным проникновением в организм вредных веществ, являющимся наиболее опасным, так как большая всасывающая поверхность легочных альвеол, усиленно омываемых кровью, обусловливает очень быстрое и почти беспрепятственное проникновение ядов к важнейшим жизненным центрам.
Поступление токсических веществ через желудочно-кишечный тракт в производственных условиях наблюдается довольно редко. Это бывает из-за нарушения правил личной гигиены, частичного заглатывания паров и пыли, проникающих через дыхательные пути, и несоблюдения правил техники безопасности при работе в химических лабораториях. Следует отметить, что в этом случае яд попадает в печень, где превращается в менее токсические соединения.
Вещества, хорошо растворимые в жирах и липоидах, могут проникать в кровь через неповрежденную кожу. Сильное отравление вызывают вещества, обладающие повышенной токсичностью, малой летучестью, быстрой растворимостью в крови.
Опасность вредных веществ для человека во многом определяется их химической структурой и физико-химическими константами. Немаловажное значение в отношении токсического воздействия имеет дисперсность проникающего в организм химического вещества, причем чем выше дисперсность, тем токсичнее вещество.
Условия среды могут либо усиливать, либо ослаблять действие. Так, при высокой температуре воздуха опасность отравления повышается; отравления амидо- и нитро-соединениями бензола, например, летом бывают чаще, чем зимой. Высокая температура влияет и на летучесть газа, скорость испарения и т. д. Установлено, что влажность воздуха усиливает токсичность некоторых ядов (соляная кислота, фтористый водород).
По характеру развития и длительности течения различают две основные формы профессиональных отравлений - острые и хронические интоксикации.
^ Острая интоксикация наступает, как правило, внезапно после кратковременного воздействия относительно высоких концентраций яда и выражается более или менее бурными и специфическими клиническими симптомами. В производственных условиях острые отравления чаще всего Связаны с авариями, неисправностью аппаратуры или с введе­нием в технологию новых материалов с малоизученной токсичностью.
^ Хронические интоксикации вызваны поступлением в организм незначительных количеств яда и связаны с развитием патологических явлений только при условии длительного воздействия, иногда определяющегося несколькими годами.
Большинство промышленных ядов вызывают как острые, так и хронические отравления. Однако некоторые токсические вещества обычно обусловливают развитие преимущественно второй (хронической) фазы отравлений (свинец, ртуть, марганец).
Помимо специфических отравлений токсическое действие вредных химических веществ может способствовать общему ослаблению организма, в частности снижению сопротивляемости к инфекционному началу. Например, известна зависимость между развитием гриппа, ангины, пневмонии и наличием в организме таких токсических веществ, как свинец, сероводород, бензол и др. Отравление раздражающими газами может резко обострить латентный туберкулез и т. д.
Развитие отравления и степень воздействия яда зависят от особенностей физиологического состояния организма. Физическое напряжение, сопровождающее трудовую деятельность, неизбежно повышает минутный объем сердца и дыхания, вызывает определенные сдвиги в обмене веществ и увеличивает потребность в кислороде, что сдерживает развитие интоксикации.
Чувствительность к ядам в определенной мере зависит от пола и возраста работающих. Установлено, что некоторые физиологические состояния у женщин могут повышать чувствительность их организма к влиянию ряда ядов (бензол, свинец, ртуть). Бесспорна плохая сопротивляемость женской кожи к воздействию раздражающих веществ, а также большая проницаемость в кожу жирорастворимых токсических соединений. Что касается подростков, то их формирующийся организм обладает меньшей сопротивляе­мостью к влиянию почти всех вредных факторов производственной среды, в том числе и промышленных ядов.
Для контроля за чистотой воздушной среды в производственных помещениях служат показатели ПДК вредных веществ, предусмотренные санитарным законодательством.
Число профессиональных отравлений является одним из важнейших показателей оценки санитарно-гигиенических условий труда и медико-санитарного обслуживания рабочих. Необходимо подчеркнуть большое значение периодических медицинских осмотров в системе профилактических мероприятий и их роль в выявлении ранних и, следова­тельно, легко излечимых стадий профессиональных отравлений.
Остановимся на мерах при оказании первой помощи при острых отравлениях, от своевременного проведения которых нередко зависит спасение жизни пострадавшего. Как известно, эти мероприятия основаны на трех принципах - этиологическом, патогенетическом и симптоматическом.
Осуществляя первый принцип, необходимо как можно быстрее прекратить даль­нейший контакт с патогенными (этиологическими) факторами, т. е. вынести пострадавше­го из загазованного помещения, снять загрязненную токсическими веществами одежду. В то же время следует по возможности удалить яд, проникший в организм, и нейтрализовать его путем использования методов антидотной терапии.
Андидоты - химические вещества, способные в той или иной степени нейтрализовать химическую активность, а, следовательно, и токсическое действие вредных веществ.
Важнейшее средство патогенетической терапии - это использование кислорода при всех интоксикациях, приводящих к возникновению кислородной недостаточности в организме. Следует подчеркнуть, что в клинике многих профессиональных отравлений син­дром кислородной недостаточности является ведущим. Кислород следует применять уже при первых признаках кислородной недостаточности, причем наиболее действенным яв­ляется ранее, своевременное и достаточно продолжительное его использование.
Важное место среди лечебных мероприятий, используемых при профессиональных отравлениях, занимает введение глюкозы. Помимо благоприятного влияния глюкозы на обмен веществ и питание сердечной мышцы, она стимулирует функцию печени, которая имеет большое значение в процессе обезвреживания ядов.
Симптоматический принцип оказания первой помощи при острых профессиональ­ных отравлениях заключается в проведении симптоматической терапии, мероприятия ко­торой определяются развитием патологического процесса и состоянием пострадавшего. При этом необходимо учитывать специфические противопоказания. Например, при ин­токсикации удушающими газами противопоказаны средства, возбуждающие дыхательный центр (лобелии, карбоген), а также сильнодействующие наркотики.

^ 5 Электромагнитные поля и неионизирующие излучения
Электромагнитное поле (ЭМП) радиочастотхарактеризуется способностью на­гревать материалы; распространяться в пространстве и отражаться от границы раздела двух сред; взаимодействовать с веществом, благодаря которой электромагнитные поля широко используются в различных отраслях народного хозяйства: промышленность, нау­ка, техника, медицина, быт.
При оценке условий труда учитываются время воздействия ЭМП и характер облу­чения работающих.
Электромагнитные волны лишь частично поглощаются тканями биологического объекта, поэтому биологический эффект зависит от физических параметров ЭМП радиочастот: длины волны (частоты колебаний), интенсивности и режима излучения (непрерывный, прерывистый, импульсно-модулированный), продолжительности и характера облучения организма (постоянное, переменное), а также от площади облучаемой поверхности и анатомического строения органа или ткани. Степень поглощения энергии тканями зависит от их способности к ее отражению на границах раздела, определяемой содержанием воды в тканях и другими их особенностями. При воздействии ЭМП на биологический объект происходит преобразование электромагнитной энергии внешнего поля в тепловую, что сопровождается повышением температуры тела или локальным избирательным нагревом тканей, органов, клеток, особенно с плохой терморегуляцией (хрусталик, стекловидное тело, семенники и др.) Тепловой эффект зависит от интенсивности облучения.
Действие ЭМП радиочастот на центральную нервную систему свидетельствует о ее высокой чувствительности к электромагнитным излучениям.
В крови наблюдаются фазовые изменения количества лейкоцитов, эритроцитов и гемоглобина (чаще лейкоцитоз, повышение эритроцитов и гемоглобина). При длительном воздействии ЭМП происходит ослабление иммунологических реакций.
Поражение глаз в виде помутнения хрусталика - катаракты является одним из наиболее характерных специфических последствий воздействия ЭМП в условиях производства. Помимо этого следует иметь в виду и возможность неблагоприятного воздейст­вия ЭМП-облучения на сетчатку и другие анатомические образования зрительного анализатора.
Воздействие ЭМП с уровнями, превышающими допустимые, могут приводить к изменениям функционального состояния центральной нервной и сердечно-сосудистой систем, нарушению обменных процессов и др. При воздействии значительных интенсивностей СВЧ могут возникать более или менее выраженные помутнения хрусталика глаза.
Интенсивность электромагнитных полей радиочастот на рабочих местах персона­ла, проводящего работы с источниками ЭМП, и требования к проведению контроля регламентирует ГОСТ 12.1.006-84. «Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля».
Максимальное значение ППЭ-ПДУ (предельно допустимый уровень) не должно превышать 10 Вт/м2 (1000 мкВт/см2).
Средства и методы защиты от ЭМП делятся на три группы: организационные, ин­женерно-технические и лечебно-профилактические.
Организационные мероприятия предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения.
Общие принципы, положенные в основу инженерно-технической защиты, сводятся к следующему: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; защита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения. Для экранирования рабочего места используют различные типы экранов: отражающие и погло­щающие.
В качестве средств индивидуальной защиты рекомендуется специальная одежда, выполненная из металлизированной ткани, и защитные очки.
Лечебно-профилактические мероприятия направлены прежде всего на раннее выявление нарушений в состоянии здоровья работающих. Для этой цели предусмотрены предварительные и периодические медицинские осмотры лиц, работающих в условиях воздействия СВЧ- 1 раз в 12 месяцев, УВЧ и ВЧ-диапазона - 1 раз в 24 месяца.
При выявлении симптомов, характерных для воздействия ЭМП, углубленное обследование и последующее лечение проводятся в соответствий с особенностями выявленной патологии.
^ Электрические поля токов промышленной частоты. Источниками электрических полей (ЭП) промышленной частоты являются линии электропередач высокого и сверхвы­сокого напряжения, открытые распределительные устройства (ОРУ).
Ремонт приводов, разъединителей, выключателей сигнальных цепей и другие рабо­ты выполняются непосредственно на оборудовании ОРУ в местах при повышенной на­пряженности электрического поля. В зависимости от характера выполняемой операции время облучения электрическим полем различной напряженности колеблется от несколь­ких минут до нескольких часов за рабочую смену.
При длительном хроническом воздействии ЭП возможны субъективные расстрой­ства в виде жалоб невротического характера (чувство тяжести и головная боль в височной и затылочной областях, ухудшение памяти, повышенная утомляемость, ощущение вяло­сти, разбитость, раздражительность, боли в области сердца, расстройства сна; угнетенное настроение, апатия, своеобразная депрессия с повышенной чувствительностью к яркому свету, резким звукам и другим раздражителям), проявляющиеся к концу рабочей смены. Расстройства в состоянии здоровья работающих, обусловленные функциональными нарушениями в деятельности нервной и сердечно-сосудистой систем астенического и астеновегетативного характера, являются одним из первых проявлений профессиональной па­тологии.
Допустимые уровни напряженности электрических полей установлены в ГОСТ 12.1.002-84. «Электрические поля промышленной частоты. Допустимые уровни напряжен­ности и требования к проведению контроля на рабочих местах».
Предельно допустимый уровень напряженности ЭП равен 25 кВ/м. Пребывание в ЭП напряженностью более 25 кВ/м без средств защиты не допускается.
^ Статическое электричество - это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ, материалов, изделий или на изо­лированных проводниках. Постоянное электростатическое поле (ЭСП) - это поле непод­вижных зарядов, осуществляющее взаимодействие между ними. Возникновение зарядов статического электричества происходит при деформации, дроблении (разбрызгивании) веществ, относительном перемещении двух находящихся в контакте тел, слоев жидких и сыпучих материалов, при интенсивном перемешивании, кристаллизации, а также вследст­вие индукции.

^ 6 Лазерное излучение
Лазер или оптический квантовый генератор- это генератор электромагнитного излучения оптического диапазона, основанный на использовании вы­нужденного (стимулированного) излучения.
По степени опасности лазерного изучения для обслуживающего персонала лазеры подразделяются на четыре класса:
Классификация определяет специфику воздействия излучения на орган зрения и кожу. В качестве ведущих критериев при оценке степени опасности генерируемого лазер­ного излучения приняты величина мощности (энергии), длина волны, длительность им­пульса и экспозиции облучения.

Класс 1:лазеры и лазерные системы малой мощности, которые не могут излучать уровень радиации, превышающие Максимально Разрешимое Облучение (МРЕ). Лазеры и лазерные системы Класса 1 не способны причинить повреждение человеческому глазу, и, следовательно, не подлежат контрольному эталонированию.
Класс 2:видимые, маломощные лазеры и лазерные системы, которые способны причинить повреждение человеческому глазу в том случае, если смотреть непосредствен­но на лазер на протяжении длительного периода (более 15 минут).
Класс 3:лазеры и лазерные системы средней мощности. Данный класс включает лазеры следующих классов:
Класс 3а:не представляют опасность, если смотреть на лазер невооруженным взглядом только на протяжении кратковременного периода. Лазеры могут представлять опасность, если смотреть на лазер с помощью собирающей оптики.
Класс 4:Лазеры и лазерные системы сильной мощности, которые способны причинить сильное повреждение человеческому глазу короткими излучениями (<0.25 с) пря­мого лазерного луча, а также зеркально или диффузно отраженного. Лазеры и лазерные системы данного класса способны причинить значительное повреждение на коже челове­ка, а также оказать опасное воздействие на легко воспламеняющие и горючие материалы.
Работа с лазерами в зависимости от конструкции, мощности, условий эксплуа­тации разнообразных лазерных систем и другого оборудования может сопровождать­ся воздействием на персонал неблагоприятных производственных факторов. Работа лазерных установок, как правило, сопровождается шумом. На фоне постоянного шума, который может достигать 70-80 дБ, имеют место звуковые импульсы с уровнем интенсивности 100-120 дБ, возникающие в результате перехода световой энергии в механическую в месте соприкосновения луча с обрабатываемой поверхностью. Разряды ламп накачки, а также взаимодействие луча с воздухом сопровождаются выделением озона и окислов азота.
Действие лазеров на организм зависит от параметров излучения (мощности и энер­гии излучения на единицу облучаемой поверхности, длины волны, длительности импульса, частоты следования импульсов, времени облучения, площади облучаемой поверх­ности), локализации воздействия и анатомо-физиологических особенностей облучаемых объектов. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения функционального характера.
Предельно допустимые уровни лазерного излучения регламентированы Санитар­ными нормами и правилами устройства и эксплуатации лазеров № 5804-91, которые по­зволяют разрабатывать мероприятия по обеспечению безопасных условий труда при рабо­те с лазерами. Санитарные нормы и правила позволяют определять величины ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Нормируется и энергетическая экспозиция облучаемых тканей.
При использовании лазеров 2-3 классов для исключения облучения персонала не­обходимо либо ограждение лазерной зоны, либо экранирование пучка излучения.
Лазеры 4 класса опасности размещают в отдельных изолированных помещениях и обеспечивают дистанционным управлением их работой.

^ Ультрафиолетовое излучение
Ультрафиолетовое излучение (УФ) представляет собой невидимое глазом электромагнитное излучение, занимающее в электромагнитном спектре промежуточное положение между светом и рентгеновским излучением.
УФ-лучи обладают способностью выдавать фотоэлектрический эффект, проявлять фотохимическую активность (развитие фотохимических реакции), вызывать люминесценцию и обладают значительной биологической активностью.
УФ-излучение от производственных источников (электрические дуги, ртутно-кварцевые горелки, автогенное пламя) может стать причиной острых и хронических поражений. Наиболее подвержен действию УФ-излучения зрительный анализатор. Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острый конъюнктивит или кератоконъюнктивит. Проявляется заболевание ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением, блефароспазом. Нередко обнаруживается эритема кожи лица и век. Заболевание длится до 2-3 суток.
Профилактические мероприятия по предупреждению электроофтальмий сводятся к применению светозащитных очков или щитков при электросварочных и других работах.
С хроническими поражениями связывают хронический конъюнктивит, блефарит, катаракту хрусталика.
Кожные поражения протекают в виде острых дерматитов с эритемой, иногда оте­ком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления с повышением температуры, ознобом, головными болями, диспепси­ческими явлениями. Классическим примером поражения кожи, вызванного УФ-излучением, служит солнечный ожог.

^ 7 Ионизирующие излучения
Ионизирующее излучение - это явление, связанное с радиоактивностью. Радиоактивность - самопроизвольное превращение ядер атомов одних элементов в другие, сопровождающееся испусканием ионизирующих излучений.
При взаимодействии ионизирующих излучений с веществом происходит ионизация атомов среды. Рентгеновское и гамма-излучения обладают высокой проникающей способностью и длина пробега их в воздухе достигает сотен метров.
Степень, глубина и форма лучевых поражений, развивающихся среди биологиче­ских объектов при воздействии на них ионизирующего излучения, в первую очередь, зависят от величины поглощенной энергии излучения. Для характеристики этого показателя пользуется понятие поглощенной дозы, т. е. энергии излучения, поглощенной в единице массы облучаемого вещества.
Для характеристики дозы по эффекту ионизации, вызываемому в воздухе, используется так называемая экспозиционная доза рентгеновского и гамма-излучений, выраженная суммарным электрическим зарядом ионов одного знака, образованных в единице объема воздуха.
Поглощенная и экспозиционная дозы излучений, отнесенные к единице времени, получили название мощности поглощенной и экспозиционной доз.
Для оценки биологического действия ионизирующего излучения наряду с поглощенной дозой используют также понятие биологической эквивалентной дозы.
Ионизирующие излучения способны вызывать все виды наследственных перемен или мутаций (мутация - это всякое изменение наследственных структур).
^ Заболевания, вызываемые действием ионизирующих излучений. Важнейшие биологические реакции организма человека на действие ионизирующей радиации условно раз­делены на две группы. К первой относятся острые поражения, ко второй - отдаленные последствия, которые в свою очередь подразделяются на соматические и генетические эффекты.
^ Острые поражения. В случае одномоментного тотального облучения человека значительной дозой или распределения ее на короткий срок эффект от облучения наблюдается уже в первые сутки, а степень поражения зависит от величины поглощенной дозы.
При облучении человека дозой менее 100 бэр, как правило, отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении некоторых вегетативных функций.
При дозах облучения более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения. Первая степень лучевой болезни (легкая) возникает при дозах 100-200 бэр, вторая (средней тяжести) - при дозах 200-300 бэр, третья (тяжелая) - при дозах 300-500 бэр и четвертая (крайне тяжелая) - при дозах более 500 бэр.
Дозы однократного облучения 500-600 бэр при отсутствии медицинской помощи считаются абсолютно смертельными.
Другая форма острого лучевого поражения проявляется в виде лучевых ожогов. В зависимости от поглощенной дозы ионизирующей радиации имеют место реакция степени (при дозе до 500 бэр), II (до 800 бэр), III (до 1200 бэр) и IV степени (при дозе вы­ше 1200 бэр), проявляющиеся в разных формах: от выпадения волос, шелушения и легкой пигментации кожи (I степень ожога) до язвенно-некротических поражений и образования длительно незаживающих трофических язв (IV степень лучевого поражения).
При длительном повторяющемся внешнем или внутреннем облучении человека в малых, но превышающих допустимые величины дозах возможно развитие хронической лучевой болезни.
^ Отдаленные последствия. К отдаленным последствиям соматического характера относятся разнообразные биологические эффекты, среди которых наиболее существенными являются лейкемия, злокачественные новообразования, катаракта хрусталика глаз и сокращение продолжительности жизни.
Лейкемия - относительно редкое заболевание. Частота возникновения лейкемии среди лиц, подвергавшихся воздействию ионизирующей радиации, по данным ряда авторов, превосходит уровни, характерные для населенияв целом.
^ Злокачественные новообразования. Ионизирующие излучения способны провоцировать злокачественные опухоли у человека, т.е. обладают бластомогенным эффектом.
^ Сокращение продолжительности жизни в результате воздействия ионизирующей радиации на организм сокращается на 25-50% по сравнению с людьми, не подвергавшимися воздействию радиации.
В данной лекции перечислены основные негативные промышленные и производственные факторы и их воздействие на организм человека. Разумеется, кроме перечисленных, известны или изучаются в настоящее время другие факторы, способные оказывать негативные эффекты на организм человека.

Наши рекомендации