Глава 10. Химия радиоактивных элементов 1 страница
Радиоактивными называются химические элементы, все изотопы которых радиоактивны, то есть совокупность радиоактивных атомов с одинаковым зарядом ядра. Известно, что в настоящее время можно получить радиоактивные изотопы практически всех элементов Периодической системы Д. И. Менделеева, но такие элементы не принято называть радиоактивными.
В основном радиоактивными являются тяжелые элементы, расположенные в конце периодической системы после висмута. Висмут является последним стабильным элементом в системе, поскольку у него достигается предельное соотношение числа нейтронов и протонов (N/Z=126/83=1,518 , еще обеспечивающее стабильность ядра. У элементов с Z> 83 число нейтронов слишком велико и начинает сказываться нестабильность самого нейтрона. Лишь два элемента- технеций ( №43) и прометий (№61)- не подчиняются этому правилу. И их нестабильность связана с другим обстоятельством. Отсутствие в природе технеция и прометия и всех элементов после урана связано с двумя причинами. Во - первых, их периоды полураспада меньше, чем возраст Земли. И, во - вторых эти элементы не являются членами естественных радиоактивных рядов, поэтому их запас не возобновляется за счет радиоактивного равновесия. Кроме того отсутствие стабильных изотопов - технеция ( №43) и прометия (№61) обусловлено квантово- механическими правилами отбора.
Химия радиоактивных элементов отличается от химии нерадиоактивных элементов теми особенностями, о которых упоминалось выше. В природных объектах и при искусственном получении радиоактивные элементы находятся в сверхнизких концентрациях, поэтому их свойства изучаются обычно с использованием специфических методов. Лишь урани торий с первых лет их открытия изучались методами классической химии. В последние годы появилась возможность изучения таких радиоактивных элементов, как нептуний, плутоний, технеций, полоний и некоторых других в аналитических количествах.
Радиоактивные элементы делят на природные (естественные) и искусственные. К природным радиоактивным элементам относятся элементы с порядковыми номерами от 84 до 92: уран, торий и продукты их распада, полоний, астат, радон, франций, радий, актиний, и протактиний.
К искусственным элементам относят технеций, прометий, и так называемые трансурановые элементы с порядковыми номерами от 93 до 110: нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий, резерфордий (№104), дубний(№ 105),сиборгий (№106), борий (№107), хассий(108), мейтнерий (№ 109), рентгений(№110).
Элементы от актиния (№ 89) до лоуренсия (№ 103) составляют группу, которую называют актиноидами.
Деление радиоактивных элементов на естественные и искусственные условно. Астат впервые был получен искусственно, а позже его короткоживущие изотопы были обнаружены в семействах урана- 238, урана-235 и тория-232, Искусственный элемент плутоний в концентрациях 10-14г на 1 г урана находится в рудах урана. Радиоактивные изотопы всех естественных элементов получены искусственно.
По своей химической природе радиоактивные элементы не относятся ни к определенному периоду, ни к определенной группе элементов периодической системы. Среди них имеются sp – элементы (франций, радий, полоний, радон, астат), d – элементы (технеций, элементы с Z ≥ 104), а также f – элементы (прометий и элементы с Z = 89 ÷ 103).
Для понимания и изучения химии радиоактивных элементов чрезвычайно важное значение имеет знание свойств и поведения соответствующих стабильных аналогов.
Описание радиоактивных элементов обычно проводится по следующей схеме:
положение в периодической системе;
история открытия;
физические свойства;
химические свойства;
методы выделения;
методы определения;
применение.
В основе предлагаемой последовательности изложения свойств радиоактивных элементов лежит увеличение их порядкового номера.
10.1 ТЕХНЕЦИЙ (ЭКАМАРГАНЕЦ) 43Tc
Tc Tехнеций Technetium | [Kr] 5s2 4d5 |
Д.И. Менделеев предсказал существование технеция, оставив для него пустую клетку в таблице, и назвал его экамарганцем. Несколько раз объявлялось об открытии элемента под номером 43, однако каждый раз это сообщение было ошибочным. Многочисленные попытки обнаружить элемент под № 43 в природе оказались безуспешными. В 1934 году немецкий физик Маттаух сформулировал правило, согласно которому у стабильных изотопов с нечетными номерами не может быть стабильных изобаров. Так, если изотоп элемента № 41 ниобий-93 стабилен, то изотопы соседних элементов - цирконий-93 и молибден-93 должны быть обязательно радиоактивными. Правило распространяется на все элементы, в том числе и на элемент № 43. Этот элемент расположен между молибденом (атомная масса 95, 92) и рутением (атомная масса 101, 07). Следовательно, массовые числа стабильных изотопов этого элемента не должны выйти за пределы диапазона 96-102. Но все стабильные «вакансии» этого диапазона заняты. У молибдена стабильны изотопы с массовыми числами 96, 97, 98 и 100, у рутения- 99, 101, 102 и некоторые другие. Это значит, что у элемента № 43 не может быть ни одного нерадиоактивного изотопа.
Рис. Эмилио Сегре
Первые изотопы были получены в 1937 г. итальянскми учеными из Палермо Эмилио Сегре и Карло Перье на циклотроне Калифорнийского университета бомбардировкой молибдена ядрами тяжелого водорода (дейтонами) получили элемент-аналог марганца и рения:
Элемент под № 43 был назван технецием от греческого слова « технетос» (искусство), так это был первый искусственно полученный элемент. Масса технеция, образовавшегося при облучении молибдена, составляла ~ 10-10 г. В качестве специфического носителя в опытах по химической идентификации технеция использовались соли рения (перренаты). Поскольку молибден состоит из нескольких стабильных изотопов, то при его бомбардировке образуется несколько изотопов технеция:
В дальнейшем технеций был получен с помощью других ядерных реакций, например
; ; ;
; ; ;
В настоящее время известно 20 изотопов и ядерных изомеров технеция с массовыми числами от 92 до 107 и с периодами полураспада от нескольких секунд до 2·106 лет. Наиболее важными из них являются изотоп и его ядерный изомер . Период полураспада составляет 2,12·105 лет. При двухмесячном облучении 1 кг триоксида молибдена в реакторе с плотностью потока нейтронов 1014см-2∙с-1 образуется 10-15 мг .
Второй путь- выделение технеция из продуктов деления урана, который и является теперь основным источником его получения. В реакторе мощностью порядка 1000 МВт в течение года накапливается около 9 кг Следовательно, он становится доступным материалом для технических целей.
В природе также найден радиоактивный технеций в виде ничтожной примеси к минералам, содержащим рений. Этот технеций, по-видимому, постоянно образуется в результате ядерных реакций, происходящих в земной коре. В земной коре образование технеция может происходить также в процессе спонтанного деления урана-235 и в результате ядерных реакций молибдена, ниобия и рутения, протекающих под влиянием космического излучения, нейтронов спонтанного деления урана и альфа-частиц, образующихся при распаде природных радиоактивных элементов. Содержание 99Tc в урановой руде оценивается в 5∙10-10 г на кг урана-235.
В 1952- 53 г.г. спектральные линии технеция были обнаружены в спектрах Звезд. Судя по спектрам элемент № 43 распространен там не меньше, чем цирконий, ниобий, молибден, рутений, Это значит,что синтез элементов во Вселенной продолжается.
Технеций относится к подгруппе марганца (Mn – Tc – Re) YII группы элементов Периодической системы Д. И. Менделеева.
Элементарный технеций – металл серебристо- коричневого цвета, который медленно тускнеет на воздухе. При низких температурах он обладает сверхпроводимостью.
В основном состоянии атомы элемента 43 обладают электронной конфигурацией [Кr] 4d65sl или [Кr] 4d55s2. Исходя из структуры электронных оболочек, для этого элемента можно ожидать проявления степеней окисления от +7 до —1.
Химическая активность элементов подгруппы марганца уменьшается в рядуMn – Tc – Re. По химическим свойствам технеций ближе к рению, чем к марганцу. Как рений, так и технеций образует соединения со степенями окисления от +1 до + 7. Однако наиболее устойчивой и характерной степенью окисления технеция является +7. В низших степенях окисления технеций проявляет большее сходство с марганцем, а в высшей – с рением. Для технеция (V11) известны такие соединения как оксид Tc2О7, кислота НTcО4 и ее соли. НTcО4 представляет собой темно – красные гигроскопичные кристаллы, хорошо растворимые в воде. По силе технециевая кислота находится в ряду: НClО4> НMnО4> НTcО4 >НReО4. Соли указанных кислот изоморфны. В этом же ряду уменьшается растворимость солей. Поэтому для них характерно образование трудно растворимых солей с такими катионами, как Cs+, Tl3+, [(C6H5)As]+, [(C6H5)P]+.
Для других степеней окисления технеция характерны реакции гидролиза, комплексообразования, которые играют важную роль в химии этого элемента.
Так как технеций содержится в продуктах деления урана и в молибденовых мишенях, важной задачей является отделение технеция от продуктов деления и от молибдена.
По степени эффективности методы выделения технеция можно расположить следующим образом: экстракционные > ионообменные > осадительные > дистилляционные > электрохимические.
Экстракционные методы основаны на экстракции технеция в форме TcO кетонами, аминами, фосфорорганическими экстрагентами из кислых и щелочных сред. В кислых растворах TcO лучше экстрагируется спиртами, кетонами и трибутилфосфатом.
Ион TcO хорошо адсорбируется анионитами.
Для отделения технеция из смеси продуктов деления и из молибденовых мишеней могут быть использованы методы соосаждения с сульфидами тяжелых металлов и с труднорастворимыми перренатами и перхлоратами.
От MoО3 технеций может быть отделен в виде Tc2О7 дистилляцией твердых окислов при 3000.
Для определения технеция используется радиометрический, активационный, спектрофотометрический, электрохимический игравиметрические методы. Весовыми формами технеция являются пертехнаты тетрафениларсония, гептасульфид.
Применение технеция обусловлено как его уникальными свойствами, так и благоприятными ядерно-физическими характеристиками его основного изотопа (большой период полураспада, мягкое в – излучение). Обладая высокой коррозионной устойчивостью и чрезвычайно малым сечением активации, технеций является перспективным материалом для антикоррозионных покрытий в реакторостроении. Пертехнат - ион в кислородсодержащих средах при концентрации в несколько мг/ л является одним из сильнейших ингибиторов коррозии для стали. Сверхпроводимость технеция и его сплавовпозволяет использовать их в качествеконструкционного материала для сверхпроводимых магнитов а такжедля изготовления высокотемпературных термопар.
используют для приготовления в – источников, применяемых в радиографии и для проверки радиометрических и дозиметрических приборов.
В медицине используется для диагностики болезней щитовидной железы, миокарда сердца, мозга, костей и урологических заболеваний.
Для получения готовят изотопный генератор из , который адсорбируют из азотнокислого раствора на колонке из Al2O3, с последующим вымыванием технеция разбавленной азотной кислотой.
10.2 ПРОМЕТИЙ –
Pm Прометий Promethium | [Xe] 6s2 4f5 |
Предположение о существовании элемента с порядковым номером 61 было сделано еще Б. Браунером в 1902 г. С 1917 г. по 1926 г. делались безуспешные попытки обнаружить элемент порядковым номером 61 в рудах редкоземельных элементов как спутник неодима и самария. В соответствии с правилом устойчивости ядер (правило Маттауха) у элемента с порядковым номером 61 не может быть стабильных изотопов, элементрадиоактивен.
Впервые элемент с порядковым номером 61 был получен в 1938 г. М. Пулом и Л. Квилом облучением неодима дейтронами по ядерной реакции:
Однако в этих работах химическое выделение не проводилось.
Впервые элемент с периодом полураспада 2.7 года был выделен и идентифицирован химически из продуктов деления урана в 1947 году Г. Маринским, Л. Гленденином и Кориэллом. С этой целью был использован метод ионообменной хроматографии. Ученые, выделившие новый химический элемент назвали его в честь мифологического титана Прометея, похитившего огонь и передавшего его людям и наказанного за это Зевсом. Как указывали исследователи «это название не только символизирует
Обнаружить прометий в земной коре удалось только после того, как он был получен искусственным путем. В природе мог сохраниться только прометий-145, так как период его полураспада соизмерим со временем существования земной коры. В урановых рудах этот изотоп содержится в количестве 4.10-15 мг на 1 г урана.
В настоящее время известно 22 изотопа и ядерных изомеров прометия, но наиболее доступным, имеющим практическое применение является (Т1/2 = 2,7 года).
Основным источником получения является деление ядер урана-235. В ядерном реакторе на 100 кВт в сутки образуется 1 мг , что позволяет получать данный изотоп в килограммовых количествах.
Другим источником получения является реакция:
.
является долгоживущим радиоактивным отравляющим веществом, образующимся при взрыве атомной бомбы.
Прометий является типичным лантаноидом. Ближайшие химические аналоги прометия – соседние с ним лантаноиды – неодим и самарий. Электронная конфигурация нейтрального атома прометия отвечает формуле 4f5 5s2 5p66s2.
По химическим свойствам весьма сходен с неодимом и другими лантаноидами. Прометий металл, Тпл.=1168,С0. В соответствии с положением в периодической системе единственной устойчивой степенью окисления прометия является +3. В чистом состоянии получены окись Pm2O3, хлорид PmCl3, имеющий желтую окраску и нитрат Pm(NO3 )3 розового цвета, а также оксалат Pm2 (C2O4)3 ·10 Н2. Прометий, как и другие редкоземельные элементы, образует комплексные соединения с большим числом лигандов с координационными числами 7, 8, 9 и 12. Характер связи элемент – лиганд в основном ионный.
В крайне разбавленных растворах при рН < 3 прометий находится в ионном состоянии. При рН > 3 в результате гидролиза начинается образование радиоколлоидов. При рН 6-7 прометий сильно адсорбируется на стекле.
Из облученных материалов, продуктов деления урана прометий выделяется с несоизмеримо большими количествами редкоземельных элементов, а в ряде случаев и от элементов актиноидов (америция, кюрия), отделение от которых является основной задачей при получении и анализе прометия.
Важнейшими методами выделения прометия является ионообменная хроматография и экстракция. Например, изотопы прометия с массовыми числами 145, 149 и 151 получают облучением 144Sm, 148Nd, 150Nd нейтронами с последующим b -распадом изотопов самария и неодима. После растворения мишени отделение проводят на катионите.
Для выделения прометия используются также процессы соосаждения, основанные на изоморфизме оксалатов и фторидов редкоземеньных элементов или на адсорбции прометия на оксидах и гидроксидах металлов.
Наиболее распространенным методом определения является радиометрический метод. Он основан на измерении бета- активности препаратов .
Все области применения обусловлены его ядерно-физическими характеристиками (мягкое бета – излучение, Еmax=0,2 МэВ, отсутствие г – фона, большой период полураспада, (массовая активность составляет 3.5∙1013 Бк/г).
используется для изготовления миниатюрных изотопных источников тока (атомных электрических батарей), в которых энергия в – излучения превращается в электрическую. Такие источники используются в космических исследованиях, в радиоизотопных стимуляторах сердечной деятельности, в слуховых аппаратах.
Особенность в том, что он практически не дает гамма- лучей, а дает лишь мягкое в–излучение используется для изготовления изотопных ионизаторов для снятия электростатических зарядов. Как источник в – излучения прометий используется в приборах неразрушающего контроля для измерения толщины и плотности материалов небольшой толщины.
Рис. Атомная электрическая батарека на
10.3 ПОЛОНИЙ
Po Полоний Polonium | [Xe] 6s2 4f14 5d10 6p4 |
Элемент с порядковым номером 84 был предсказан в 1889 году Д. И. Менделеевым, а открыт в 1898 г. М. Кюри и П. Кюри при изучении аномальной радиоактивности урановых минералов. До этого было известно только два слабо радиоактивных химических элемента — уран и торий.Опыты были начаты с традиционного качественного анализа минерала по схеме, которую предложил немецкий химик-аналитик К.Р. Фрезениус еще в 1841 г. и по которой многие поколения студентов в течение почти полутора веков определяли катионы так называемым сероводородным методом.Проводя систематический анализ, М. Кюри каждый раз проверяла отдельные фракции (осадки и растворы) на радиоактивность с помощью чувствительного электрометра, изобретенного ее мужем. Прежде всего, минерал был растворен в азотной кислоте. Затем жидкость выпарили досуха, остаток растворили в воде и пропустили через раствор ток сероводорода. При этом выпал черный осадок, который мог содержать нерастворимые сульфиды свинца, висмута, меди, мышьяка, сурьмы и некоторых других металлов. Хотя уран и торий остались в растворе, осадок был радиоактивным. М. Кюри обработала его сульфидом аммония, чтобы отделить мышьяк и сурьму, — они в этих условиях образуют растворимые тиосоли, например (NH4)3AsS4 и (NH4)3SbS3. Раствор не обнаружил радиоактивности и был отброшен. В осадке остались сульфиды свинца, висмута и меди. Его снова растворили в азотной кислоте, добавили к раствору серную кислоту и выпарили на пламени горелки до появления густых белых паров SO3. При этом летучая азотная кислота полностью удаляется, а нитраты металлов превращаются в сульфаты. После охлаждения смеси и добавления холодной воды в осадке оказался нерастворимый сульфат свинца PbSO4 — активности в нем не было. К отфильтрованному раствору добавили крепкий раствор аммиака. Опять выпал осадок, на этот раз белого цвета; он содержал смесь основного сульфата висмута (BiO)2SO4 и гидроксида висмута Bi(OH)3. В растворе же остался комплексный аммиакат меди [Cu(NH3)4]SO4 ярко-синего цвета. Белый осадок, в отличие от раствора, оказался сильно радиоактивным. Поскольку свинец и медь были уже отделены, в нем остались висмут и примесь нового элемента. М. Кюри снова перевела белый осадок в темно-коричневый сульфид Bi2S3, высушила его и нагрела в вакуумированной ампуле. Сульфид висмута при этом не изменился (он устойчив к нагреву и лишь при 685°С плавится), однако из осадка выделились какие-то пары, которые осели в виде черной пленки на холодной части ампулы. Пленка была очень радиоактивной и, очевидно, содержала новый химический элемент — сосед висмута в периодической таблице. Это и был полоний — следующий после урана и тория радиоактивный элемент, вписанный в Периодическую таблицу. Лишь в 1910 году, переработав много урановой руды, удалось получить образец, содержащий 0,1 мг полония.
Элемент под № 84 был назван в честь родины Марии – полоний. Это первый элемент, вписанный в таблицу Д. И. Менделеева после открытия радиоактивности. Он же первый (по порядку атомных номеров) и самый легкий из элементов, не имеющих стабильных изотопов. Он же один из первых радиоактивных элементов, примененных в космических исследованиях.
Известно 6 природных изотопов, 20 радиоактивных искусственных изотопов и 9 изомера полония с массовыми числами от 192 до 218.
Полоний в природе очень редок, он существует только как продукт радиоактивного распада в урановых и ториевых минералах и образуется в результате радиоактивного распада долгоживущих радиоактивных элементов — тория и урана. Его изотопы служат промежуточными членами длинных цепочек распада (так называемых серий или рядов). Сами уран и торий, а также их соединения в чистом виде практически не представляют опасности, поскольку распадаются очень медленно — их радиоактивность мала. Однако при их распаде образуется множество радионуклидов, которые в сумме дают более интенсивную и более опасную радиацию. В равновесии с 1 г урана находится 7,6·10-11 г Ро, а с 1 г Ra – 2,24·10-4 г. Распространенность в земной коре равна 2·10-14 масс. %.
Наиболее важным изотопом полония является - член естественного радиоактивного ряда 238U. Полоний в природе очень редок, он существует только как продукт радиоактивного распада урана-238 в урановых рудах.
Рис. Цепочка радиоактивных превращений, в результате которых образуется 210Po
Именно с этим изотопом полония имели дело М. И П. Кюри. Таким образом, источником полония-210 может служить активный осадок радона, накапливающийся в старых радоновых ампулах. В равновесии с 1 г урана находится 7,6·10-11 г Ро, а с 1 г Ra – 2,24·10-4 г. Распространенность в земной коре равна 2·10-14 масс.%.
Легкие изотопы полония — чистые альфа-излучатели. Начиная с 198Ро к б-распаду добавляется электронный захват (иначе — К-захват), при котором электрон с самой внутренней электронной оболочки атома (К-оболочки) захватывается ядром. Начиная с нуклида 199Ро, распад сопровождается г-излучением, энергия которого может составлять от 0,17 до 2,6 МэВ, причем данный нуклид способен испускать г-лучи разной энергии. Два тяжелых изотопа полония, 215Ро и 218Ро, в небольшой степени обладают также в-активностью.
В настоящее время получают в ядерном реакторе облучением висмутовой мишени нейтронами :
Bi (n, g) Bi Po
Более долгоживущий изотоп полония с массовым числом 209 и периодом полураспада 103 года можно получить путем облучения мишени из висмута-209 в циклотроне потоками протонов:
Bi(p, n) Po
Химические и физические свойства полония исследованы с помощью химических микрометодов, так как исследования с большими количествами полония осложнены высокой удельной радиоктивностью полония (массовая активность составляет 1,7 ·1014Бк/г). Специфическим носителем при изучении поведения микроколичеств полония является теллур.
Полоний – элемент главной подгруппы УI группы периодической системы. Наиболее устойчивой степенью окисления полония является +4. В электрохимическом ряду полоний занимает место между теллуром и серебром. По химическим свойствам полоний сходен со своим аналогом по группе периодической системы теллуром, и отчасти – с висмутом. Электронная конфигурация полония в основном состоянии 4 f14 5d 10 6s2 6p4, поэтому стоит ожидать, что степени окисления этого элемента будут –2, +2, +4, +6.