Транзисторные сглаживающие фильтры
Транзисторные сглаживающие фильтры могут быть построены по примеру LC-фильтров так, что транзистор заменяет дроссель или конденсатор фильтра. Практически транзисторные сглаживающие фильтры целесообразно применять лишь с последовательным включением транзистора, заменяя при этом дроссель. В таком случае транзисторный сглаживающий фильтр может быть рассчитан на большие токи нагрузки и сравнительно низкие напряжения.
Рисунок 4.5 - Схема П-образного транзисторного сглаживающего фильтра (а), выходные характеристики транзистора (б) и эквивалентная схема фильтра (в)
На рисунке 4.5 показана схема П-образного сглаживающего ф-ильтра, в котором действие транзистора эквивалентно действию дросселя. Подобно дросселю транзистор обладает сравнительно большим сопротивлением переменному току и небольшим сопротивлением постоянному току. Эти сопротивления определяются в виде: RП = RK = ΔUКЭ/ΔIK и R0 = UКЭ/IK, где IK, UКЭ и соответствующие приращения этих величин показаны на рисунке 4.5 а, б.
В простейших схемах транзисторных фильтров для поддержания постоянства тока Iэ используется цепочка R1C2 (рисунок 4.5 а) с большой постоянной времени τ. В результате ток IЭ = UC2/R1 за время одного периода пульсации практически не меняется и в схеме создается необходимое напряжение между эмиттером и базой транзистора. При отсутствии R1C2 цепочки пришлось бы включать отдельную батарею. Таким образом, цепочки R1C2 играют в схеме фильтра вспомогательную роль, Сф1 — является емкостным фильтром, а действие Г-образной части схемы рисунка 4.5, а сводится к тому, что часть переменной составляющей входного напряжения на фильтре усиливается транзистором (усиливается лишь та часть напряжения, которая непосредственно приложена ко входу транзистора), причем усиленное напряжение сдвинуто по фазе относительно входного напряжения на 180°. В результате этого осуществляется частичная компенсация переменной составляющей и пульсация напряжения на нагрузке уменьшается.
Коэффициент сглаживания П-образного фильтра (т. е. включая конденсаторы СФ1 и СФ2) по схеме рисунка 4.5, а можно определить в виде
,
Так как транзистор действует в качестве дросселя фильтра, то эквивалентная индуктивность в схеме равна Lэкв = RK/[2π·m·fc].
Описанные сглаживающие фильтры, подобные фильтрам по схеме рисунка 4.5а, обладают существенными недостатками, заключающимися в том, что с изменением тока нагрузки или температуры окружающей среды, а также при смене транзисторов, меняется напряжение на нагрузке. Эти факторы значительно слабее сказываются на режиме работы стабилизаторов с автоматическим смещением.
Рисунок 4.6 - Схемы Г-образных транзисторных сглаживающих фильтров: а — с выходной емкостью Сф2, б — без внешней выходной емкости
Примером простейшей схемы транзисторного сглаживающего фильтра с автоматическим смещением служит схема, показанная на рисунке 4.6, а. Здесь показана Г-образная часть фильтра, причем транзистор действует как дроссель.
Получаемые при этом коэффициенты сглаживания подобных фильтров намного меньше, чем фильтров с фиксированным смещением. Этим можно объяснить, что фильтры по схеме рисунка 4.6, а применяются редко.
На рисунке 4.6 б показана схема транзисторного сглаживающего фильтра, у которого нагрузка включена в цепь эмиттера, т.е. схема в целом представляет эмиттерный повторитель. В этой схеме отсутствует конденсатор Сф2.
В транзисторных сглаживающих фильтрах целесообразно применять составные транзисторы вследствие того, что коэффициенты усиления таких транзисторов резко увеличиваются по сравнению с одиночными транзисторами
Рисунок 4.7 - Схемы сглаживающих фильтров с составными транзисторами
Применение многозвенных транзисторных фильтров практически отпадает по ряду причин, в том числе и вследствие резкого уменьшения кпд., усложнения схем, снижения надежности действия и т. п.
Преобразователи частоты
При конструировании устройств электропитания для аппаратуры автоматики и связи возникает необходимость преобразования тока одной частоты в ток другой частоты, с высокими энергетическими показателями.
Для питания рельсовых цепей, на участках электрифицированных железных дорог с электротягой переменного тока промышленной частоты (50 Гц), а также с электротягой постоянного тока, используют параметрические преобразователи частоты. Принцип параметрического преобразования частоты основан на том, что принудительное изменение какого-либо параметра колебательного контура (L.или С) вызывает в нем колебания с частотой, в определенное число раз отличающейся от той, с которой изменяется параметр. Если потери в контуре будут компенсироваться за счет внешнего источника энергии, то эти колебания будут незатухающими. Схема контура (рисунок 6.9,а) состоит из дросселя L, конденсатора С, резистора Rи источника тока Е. Если емкость конденсатора С периодически изменять по косинусоидальному закону, то ток в контуре будет изменяться по синусоидальному закону частотой, в 2 раза меньшей. Проще изменять индуктивность дросселя, изменяя подмагничивание его сердечника.
Преобразователи частоты (рисунок 6.10, а) выполнены на двух П-образных сердечниках. На крайних стержнях размещены обмотки подмагничивания Фп1 и Фп2, которые соединены так, чтобы создаваемые в средних стержнях потоки Фп1 и Фп2 были направлены встречно. На средних стержнях сердечников размещена контурная обмотка wK, индуктивность которой совместно с емкостью конденсатора С образует колебательный контур с резонансной частотой 25 Гц. Обмотки wП1 и wП2, подключены к сети переменного тока через диод VD, который обеспечивает однополупериодное выпрямление. Если бы обмотки обладали только активным сопротивлением, то кривая выпрямленного тока повторяла бы форму выпрямленного напряжения (рисунок 6.10,6). Наличие индуктивности искажает форму тока. Ток подмагничивания iп проходит через обмотки в течение большего времени, чем длительность одного полупериода напряжения в сети. Ток подмагничивания iП (рисунок 6.10,в) содержит только первую гармонику с амплитудой Iт и постоянную составляющую I0. Эта же кривая в соответствующем масштабе характеризует изменение магнитных потоков Фп1 и Фп2 и магнитной индукции Вп1, Вп2 в сердечниках. При увеличении магнитной индукции увеличивается степень насыщения сердечников и уменьшается их магнитная проницаемость μ (рисунок 6.10, г). Следовательно, индуктивность контурной обмотки будет изменяться по тому же закону с частотой сети fс = 1/Тс. Правую и левую половины преобразователя невозможно выполнить совершенно одинаковыми. Поэтому один из магнитных потоков Фп1 или Фп2 будет преобладать. В контурную обмотку из сети поступит энергия.
Рисунок 6.9 – Схема контура (а) и зависимости емкости конденсатора и тока в контуре от времени (б)
Рисунок 6.10 – Схема параметрического преобразователя частоты (а)
и зависимости напряжений и токов от времени (б-д)
Как только в обмотке wK, начнет проходить ток, в сердечниках появятся потоки ФK1 и ФK2, которые будут направлены в одном стержне согласно с потоком подмагничивания, в другом - встречно. При этом симметрия состояния насыщения сердечников нарушается, и в контурную обмотку из сети начнут поступать импульсы энергии. Для того чтобы в контуре могли существовать незатухающие колебания, необходимо, чтобы энергия, запасаемая за счет индуктивности обмотки wK и емкости конденсатора СК, была бы равна энергии, расходуемой на питание GR и на потери в элементах преобразователя G, т.е. LK·I2/2 + C·UC/2 = GR + G.
При уменьшении индуктивности контурной обмотки LK напряжение на конденсаторе С будет возрастать (рисунок 6.10,д). Период изменения напряжения в контуре Тк в 2 раза больше, чем в сети переменного тока Тс. Следовательно, частота тока в нагрузке будет в 2 раза ниже частоты в сети.
Отличительной особенностью преобразователей этого типа являются их хорошие стабилизирующие свойства. Они устойчиво работают при значительных изменениях напряжения на входе, сохраняя неизменным напряжение переменного тока с частотой 25 Гц на выходе. Они не нуждаются в защите от коротких замыканий или перегрузок. Если ток нагрузки преобразователя превышает значение, определяемое его расчетной мощностью, то преобразователь перестает работать, а ток, потребляемый им из сети, не превышает тока нормальной работы. После устранения перегрузки работа преобразователя автоматически восстанавливается.
При эксплуатации часто используют целую группу преобразователей частоты, питающих отдельные нагрузки. В этом случае за счет асимметричной нагрузки, создаваемой преобразователями (используется только один полупериод тока частоты 50 Гц), возможно искажение формы напряжения питающей сети. Кроме того, если преобразователи питаются через общий разделительный трансформатор, то возможно увеличение потерь в этом трансформаторе за счет вынужденного намагничивания сердечника. Для предотвращения этих явлений преобразователи разбивают на две группы и включают таким образом, чтобы использовались оба полупериода напряжения сети.