Маслянисто-кислое брожение
Масляно-кислое брожение — это сложный биохимический процесс превращения сахара масляно-кислыми бактериями в анаэробных условиях с образованием масляной кислоты, диоксида углерода и водорода.
Субстратами данного типа брожения являются в основном углеводы. Полисахариды расщепляются до моносахаридов, которые изомеризуются в глюкозу и подвергаются гликолитическому расщеплению до пирувата. Окислительное декарбоксилирование пирувата приводит к образованию ацетил-СоА с последующим образованием масляной кислоты.
Глюкоза?масляная кислота + СО2 + Н2 + 63 кДж/моль.
Масляная кислота является летучей жидкостью с очень неприятным запахом. Возбудители маслянокислого брожения широко распространены в природе и относятся к роду Clostridium (в дальнейшем Cl.), семейству Bacillaceace. Клетки грамположительные, палочковидные, форма клетки может изменяться в зависимости от условий среды. В молодом возрасте подвижны, имеют перитрихиальное жгутикование. Образует споры, диаметр которых бывает больше толщины клетки. Маслянокислые бактерии являются облигатными анаэробами, однако существуют все переходные формы: от строгих анаэробов (Cl. pasterianum, Cl. kluyveri) до почти аэротолерантных (Cl. histolyticum, Cl. acetobutylicum). Оптимальная температура роста 30…40 °C, но есть термофильные виды с оптимальной температурой 60…75 °C (Cl. thermoaceticum, Cl. thermohydrosulfucicum).
Клостридии растут при нейтральной или щелочной реакции среды, поэтому нежелательный рост маслянокислых бактерий, например, в квашеной капусте, силосе, фруктовых консервах, сырых колбасах, можно полностью подавить, если продукт подкислить. Клетки клостридий образуют специфическое запасное вещество — гранулезу (крахмалоподобный полисахарид, окрашиваемый йодом в синеватый или коричневато-фиолетовый цвет) в виде гранул.
Прототипом брожения, осуществляемого клостридиями, можно считать сбраживание глюкозы Cl. butyricum и Cl. acetobutylicum c образованием масляной и уксусной кислот, бутанола, этанола, ацетона, СО2 и Н2. Выход продуктов варьируется в зависимости от условий брожения.
Для получения масляной кислоты в промышленном масштабе используют крахмалосодержащее сырье: картофель, зерновые и др. Крахмал гидролизуется 0,4…0,5 %-ной серной кислотой. После нейтрализации среды известью и добавления азотсодержащих веществ в питательную среду вносят маслянокислые бактерии.
Масляная кислота представляет собой бесцветную жидкость с неприятным запахом, слабые растворы этой кислоты обладают специфическим сырным запахом. Эфиры масляной кислоты обладают приятными ароматами: метиловый имеет яблочный аромат, этиловый — грушевый, амиловый — ананасовый. Эфиры масляной кислоты как ароматические вещества используют в кондитерской и парфюмерной промышленности, при изготовлении фруктовых напитков.
В зависимости от химического состава пищевых продуктов бактерии рода клостридиум в процессе маслянокислого брожения способны приводить к их порче.
Таблица 1. Спектр субстратов и продуктов маслянокислого брожения некоторых бактерий рода ClostridiumБактерии Субстраты Продукты
Cl. butyricum Глюкоза, крахмал, декстрин Бутират, ацетат, CO2, H2
Cl. tyrobutyricum Глюкоза, лактат + ацетат Бутират, ацетат, CO2, H2
Cl. pasterianum Глюкоза, крахмал, маннитол, инулин Бутират, ацетат, CO2
Cl. pectinovorum Пектин, крахмал, гликоген, декстрин Бутират, ацетат
Пропионокислое брожение
Пропионовокислое брожение: химизм и особенности
Основные продукты пропионовокислого брожения, вызываемого несколькими видами бактерий из рода Propionibacterium, — пропионовая (CH3CH2OH) и уксусная кислоты и CO2. Химизм пропионовокислого брожения сильно изменяется в зависимости от условий. Это, по-видимому, объясняется способностью пропионовых бактерий перестраивать обмен веществ, например, в зависимости от аэрации. При доступе кислорода они ведут окислительный процесс, а в его отсутствии расщепляют гексозы путём брожения. Пропионовые бактерии способны фиксировать CO2, при этом из пировиноградной кислоты и CO2 образуется щавелевоуксусная кислота, превращающаяся в янтарную кислоту, из которой декарбоксилированием образуется пропионовая кислота.
Основное энергетическое значение для пропионовокислых бактерий имеют так называемые ключевые реакции пропионовокислого брожения.
Под пропионовокислым брожением подразумевают биохимический процесс превращения бактериями сахара, молочную кислоту и ее солей в пропионовую кислоту. В этом брожении, кроме пропионовой кислоты, образуются и такие продукты, как уксусная кислота, углекислый газ, янтарная кислота, ацетоин, диацетил, другие летучие ароматические соединения - диметилсульфид, ацетальдегид, пропионовый альдегид, этанол и пропанол. Химизм данного брожения подобен типичному молочнокислому брожению с той разницей, что образовавшаяся молочная кислота в этом брожении не конечный продукт, а промежуточный. От других типов брожения пропионовокислое отличается высоким выходом АТФ, участием некоторых уникальных ферментов и реакций.
Пропионовокислым бактериям свойственен бродильный тип метаболизма: они расщепляют сахара по пути Эмбдена–Мейергоффа до пропионата, ацетата, СО2 и сукцината. Химизм пропионовокислого брожения хорошо изучен и описан.
В пропионовокислом брожении мы имеем дело с карбоксилированием пирувата, приводящим к возникновению нового акцептора водорода — ЩУК. Восстановление пировиноградной кислоты в пропионовую у пропионовокислых бактерий протекает следующим образом. Пировиноградная кислота карбоксилируется в реакции, катализируемой биотинзависимым ферментом, у которого биотин выполняет функцию переносчика CO2. Донором CO2-группы служит метилмалонил-КоА. В результате реакции транскарбоксилирования образуются ЩУК и пропионил-КоА:
Ключевую реакцию брожения - превращение а-метилмалонил-КоА в сукцинил-КоА катализирует кофермент В12 (Ado Cbl).
Когда сбраживаемым субстратом является лактат, он сначала окисляется в пируват. Часть пирувата далее окисляется до ацетил-КоА и СО2, причем превращение ацетил-КоА в ацетат сопровождается образованием АТФ. Получение в процессе брожения окисленных продуктов, ацетата и СО2 уравновешивается сопутствующим восстановлением пирувата до пропионата.
Пировиноградная кислота - обязательное промежуточное соединение в брожении.
Сыроделие – наиболее древняя биотехнология, использующая биохимическую активность пропионовых бактерий. Первые исследования пропионовокислых бактерий были связаны с изучением их роли в созревании сыров. Наиболее высокими органолептическими свойствами и длительными сроками хранения обладают твердые сычужные сыры с высокой температурой второго нагревания, при изготовлении которых принимают участие пропионовокислые бактерии. Общее правило, касающееся использования этих бактерий в созревании сыров, гласит: вреден как недостаток, так и избыток пропионовокислых бактерий, но без их участия сыр нужного качества изготовить невозможно; могут получаться «слепые», т.е. сыры без «глазков» или с другими дефектами. Многие пороки лучших сыров вызваны отсутствием или слабым ростом пропионовокислых бактерий.
Основная роль пропионовокислых бактерий в созревании сыров состоит в использовании лактатов, образованных молочнокислыми бактериями при сбраживании лактозы молока, при этом лактаты превращаются в пропионовую, уксусную кислоты и СО2. Кислоты обеспечивают острый вкус сыров и участвуют в консервации молочного белка казеина; гидролитическое расщепление липидов с образованием жирных кислот важно для развития органолептических свойств сыра; образование пролина и других аминокислот, а также летучих веществ: ацетоина, диацетила, диметилсуль-фида, ацетальдегида, участвующих в формировании аромата сыра; образование углекислоты в процессе пропионово-кислого брожения лактата и декарбоксилирования аминокислот (главным образом); СО2 участвует в создании рисунка сыра - «глазков», образовании витаминов и в первую очередь витамина В12.
Созревание сыра – сложный биохимический процесс, протекающий при участии сычужного фермента, ферментов молока, молочнокислых и пропионовых бактерий. Происходят энзиматические изменения в белках, жире, аминокислотах; формируется аромат, внешний вид, консистенция сыра.
Пропионовокислые бактерии размножаются в сыре в значительном количестве в период выдерживания его в бродильном подвале, рост их продолжается в течение всего периода созревания. В результате пропионовокислого брожения образуются специфический вкус и запах, а также характерный рисунок «Швейцарского» сыра».
Пропионовокислые бактерии также применяют в хлебопечении. Их наряду с молочнокислыми бактериями и дрожжами вводят в некоторые закваски для теста с целью образования в процессе ферментации, помимо молочной и уксусной кислот, еще и пропионовой. При внесении в тесто такой закваски хлеб содержит 0,1% уксусной, 0,2% молочной, 0,1% пропионовой кислоты (по отношению к весу муки). Такого количества пропионовой кислоты достаточно для проявления фунгицидного действия, без заметного влияния на вкус и аромат выпекаемого хлеба.
Использование пропионовокислых бактерий нашло себя, хотя и незначительно, в кисломолочном производстве.
С целью обогащения витамином В12 в кефир и другие молочнокислые продукты вносили пропионовокислые бактерии, повышая, таким образом, питательные свойства и лечебную ценность этих продуктов. Готовый продукт имеет однородную сметанообразную гомогенную консистенцию молочно-белого цвета, кисломолочный освежающий, слегка острый вкус. Количество клеток пропионовокислых бактерий в 1 см3 10 единиц, молочнокислых стрептококков 107.
Разбавление молока творожной сывороткой приводит к экономии молока, но вместе с тем и к разбавлению его, вследствие чего содержание в продукте сухих веществ, витаминов, белка снижается. Эти неизбежные потери компенсируются использованием в составе закваски пропионовокислых бактерий, синтезирующих белки, витамины, внеклеточные полисахариды, увеличивающие вязкость продукта.
При изготовлении сметаны применение закваски, содержащей продуценты витаминов группы В, позволяет вести процесс ее производства в одних условиях независимо от жирности сырья, при этом сквашивание ведут при 30– 320С, что ускоряет процесс и позволяет получить продукт с высокими питательными свойствами. Полученный продукт богат витаминами группы В (В1, В2, В12), фолиевой кислотой, микроэлементами, в том числе и железом, а также другими продуктами метаболизма в легкоусвояемой форме, которые обладают лечебными свойствами.
Пропионовокислые бактерии используют в основном в сыроделии при производстве сыров с высокой температурой второго нагревания и незначительно – при производстве кисломолочных продуктов. При выработке кисломолочных продуктов в качестве закваски используют пропионовокислые бактерии в комбинации с молочнокислыми бактериями.
Интенсивный путь развития молочной промышленности требует новых нетрадиционных подходов к разработке технологии молочных продуктов. Одним из важнейших направлений развития технического прогресса в области переработки молока является развитие биотехнологии, в частности применение ферментных препаратов для производства молочных продуктов. Среди ферментных препаратов, рекомендованных для пищевой промышленности, важная роль принадлежит в-галактозидазе, использование которой при переработке молочного сырья позволяет ускорить процесс молочнокислого брожения, повысить лечебные свойства и качество молочных продуктов.
Пропионовокислые бактерии также применяют для микробиологического синтеза витамина B12. У пропионовокислых бактерий обнаружена способность к активному синтезу витамина B12, который накапливается внутри клеток. Эта особенность используется для промышленного получения витамина B12 на отходах производства (молочной сыворотке и др.) с добавлением кукурузного экстракта в качестве источника витаминов.