Реакции электрофильного присоединения

Билет 25.

Алка́ны (насыщенные углеводороды) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.

Для предельных углеводородов характерны реакции замещения, а так же реакции разрыва С-С связи.

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-излучением или нагреть.

Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от хлорметана до тетрахлорметана. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного, и в 2 раза меньше, чем вторичного. Таким образом, хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Стоит отметить, что галогенирование происходит тем легче, чем длиннее углеродная цепь н-алкана. В этом же направлении уменьшается энергия ионизации молекулы вещества, то есть, алкан легче становится донором электрона.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь).

1. CH4 + Cl2 → CH3Cl (хлорметан) + HCl

2. CH3Cl + Cl2 → CH2Cl2 (дихлорметан) + HCl

3. CH2Cl2 + Cl2 → CHCl3 (трихлорметан) + HCl

4. CHCl3 + Cl2 → CCl4 (тетрахлорметан) + HCl.

Нитрование

Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота NO2 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных.

a) Реакция Коновалова

СН3-СН3+HNO3разб.–›СН3-СН2-NO2 (при 1500С)

б) при повышенной температуре с азотной кислотой

СН3-СН2-СН3+НNO3конц. –› СН3-СН2-СН2-NO2+ СН3-СН2 -NO2+ СН3 -NO2 ( нитрометан) (при 5000С)

Cl

l

CH3-CH2-CH-CH3+Сl2 –› CH3-CH2-C-CH3 + HCL

I l

CH3 CH

Галогенирование и нитрование по Коновалову в 1 очередь подвергает замещению Н2, стоящий у третичного углеродного атома, затем у вторичного, и потом у первичного.

NO2

l

CH3 -CH-CH3+HNO3разб.–› CH3 -C-CH3

I l

CH3 CH3

Сульфирование

Реакция, протекающая по радикальному механизму. Замещение Н2 происходит легче у 2 углеродного атома, а у 3 реакция не идет.

RH+SO2–›R-SO2Cl

Окисление

Окисление кислородом воздуха, а так же KMnO4, K2Cr2O7, парафином. Происходит при высоких t с образование преимущественно кислот. Превращение при выше 10000С называется крекингом. Основным процессом при крекинге являются процессы дегидрогенизации углеводорода и разрыва углеродной цепи. Одновременно происходит процесс изомеризации и циклизации. Следовательно, образуютсяН2 и газовая сажа

CH4 + 2O2 → CO2 + 2H2O + Q.

· Каталитическое окисление

Могут образовываться спирты, альдегиды, карбоновые кислоты.

При мягком окислении СН4 в присутствии катализатора кислородом (при 200 °C) могут образоваться:

· метанол: 2СН4 + О2 → 2СН3ОН;

· формальдегид: СН4 + О2 → СН2О + Н2O;

· муравьиная кислота: 2СН4 + 3О2 → 2НСООН + 2Н2O.

· Дегидрирование

Образование:

1) В углеродном скелете 2 (этан) или 3 (пропан) атома углерода — получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода:

Условия протекания: 400—600 °C, катализаторы — Pt, Ni, Al2O3, Cr2O3.

а) CH3-CH3 → CH2=CH2 + H2 (этан → этен);

б) CH3-CH2-CH3 → CH2=CH-CH3 + H2 (пропан → пропен).

2) В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода — получение алкадиенов; выделение водорода:

в) CH3-CH2-CH2-CH3 → CH2=CH-CH=CH2 + 2H2 (бутан → бутадиен-1,3 — дегидрирование удалённых связей С-С).

в') CH3-CH2-CH2-CH3 → CH2=C=CH-CH3 + 2H2 (бутан → бутадиен-1,2 — дегидрирование соседних связей С-С-С).

3) В углеродном скелете 6 (гексан) и более атомов углерода — получение бензола и его производных:

г) CH3-CH2-CH2-CH2CH2-CH2-CH2-CH3 (октан) → П.-ксилол, параллельно М.-ксилол, параллельно этилбензол + 4H2.

Билет 26.

Циклоалканы, также нафтены, цикланы, или циклопарафины — циклические насыщенные углеводороды, по химическим свойствам близки к предельным углеводородам. Входят в состав нефти. Открыты В. В. Марковниковым в 1883 году из Бакинской нефти. Марковников назвал их "Нафтенами" от тюркского "нафт"-"нефть".

В нефтехимической промышленности нафтены являются источником получения ароматических углеводородов путем каталитического риформинга. Наибольшее практическое значение приобрёл циклогексан, применяемый для синтеза капролактама, адипиновой кислоты и других соединений, используемых в производстве синтетического волокна.

К циклоалканам относят предельные углеводороды с общей формулой СnH2n, имеющие циклическое строение. Названия циклоалканов строятся из названий соответствующих алканов с добавлением приставки «цикло», например циклопропан, 1,3-диметилциклогексан. Самый большой циклоалкан, который удалось синтезировать – это циклооктаоктаконтадиктан С288H576.

Для циклоалканов характерны следующие виды изомерии:

1. Изомерия углеродного скелета

2. Пространственная (цис-транс-изомерия)

3. Межклассовая изомерия с алкенами

Все атомы углерода в молекулах циклоалканов имеют sp3-гибридизацию. Однако величины углов между гибридными орбиталями в циклобутане и особенно в циклопропане не 109°28', а меньше из-за геометрии, что создает в молекулах напряжение, поэтому малые циклы очень реакционноспособны.

Циклопропан применяют для наркоза, но его применение ограничено из-за взрывоопасности.

Физические свойства

При обычных условиях первые два члена ряда гм(С3 - С4) - газы, (С5 - С16) - жидкости, начиная с С17 - твердые вещества. Температуры кипения и плавления циклоалканов выше, чем у соответствующих алканов. Циклоалканы в воде практически не растворяются. При увеличении числа атомов "С" возрастает Молярная масса, следовательно увеличивается температура плавления.

Получение циклоалканов

1. Дегалогенирование

Br-СН2-СН2-СН2-Br + Mg = циклопропан + MgBr2

2. Гидрирование ароматических углеводородов (катализатор, давление, температура)

С6Н6 +3Н2 = С6Н12

Химические свойства

По химическим свойствам малые и обычные циклы существенно различаются между собою. Циклопропан и Циклобутан склонны к реакциям присоединения, т.е. сходны в этом отношении с алкенами. Циклопентан и Циклогексан по своему химическому поведению близки к алканам, так как вступают в реакции замещения.

1. Циклопропан и циклобутан способны присоединять бром :

С3H6 + Br2 → BrCH2—CH2—CH2Br

2. Циклопропан, циклобутан и циклопентан могут присоединять водород, давая соответствующие нормальные алканы. Присоединение происходит при нагревании в присутствии никелевого катализатора :

С4H8 + H2 → CH3—CH2—CH2—CH3

Алициклические соединения,органические соединения, в молекулах которых имеются замкнутые кольца из углеродных атомов. Так, циклогексанол (1) содержит кольцо из 6 атомов углерода. Ароматические соединения тоже содержат замкнутые кольца, но обладают рядом существенных особенностей; поэтому их выделяют в отдельный большой класс органических соединений. А. с. и ароматические соединения совместно относятся к карбоциклическим, или изоциклическим, соединениям.

Многочисленные А. с. различаются между собой числом колец и их взаимным расположением, числом атомов углерода в циклах, наличием простых или кратных связей между атомами углерода, функциональными группами. Так, известны моно-, би-, три- и полициклические А. с. Циклопропан (II) содержит 3 атома углерода в цикле, циклопентан (III) - 5, циклогексан - 6 атомов углерода. В отличие от соединений I - III, принадлежащих к циклоалканам, циклопентен (IV) и циклогексадиен (V) - типичные представители ненасыщенных А. с. с различным числом двойных связей.

А. с. встречаются в самых разнообразных природных соединениях. В частности, в нефти содержится много циклоалканов, в особенности циклопентан и циклогексан, в связи с чем их также называют нафтенами.

ТИПЫ НАПРЯЖЕНИЯ В ЦИКЛАХ. 1) УГЛОВОЕ (только малые),
2) ТОРСИОННОЕ (заслоненное), ТРАНСАННУЛЯРНОЕ (в средних циклах).

ЦИКЛОПРОПАН. Строение(С-С 1.51 А, НСН = 114o),гибридизация ( sp2+ sp5), банановые связи, угол 102oсходство с алкенами , ТОРСИОННОЕ напряжение – 1 ккал/м на С-Н, т.е. 6 ккал/м из 27.2 (табл.). Кислотность CH – рКа как у этилена =36-37, сопряжение с С=С.

ОСОБЕННОСТИ ХИМИЧЕСКИХ СВОЙСТВ. 1. Гидрирование в С3Н82/ Pt 50oС)
2. HBr – раскрытие цикла по Марковникову , 1,5-присоединение к винил-ЦП
3. Радик . галогенирование. Устойчивость к окислителям (озон скорее окислит Ph -кольцо, чем ЦП!)

ЦИКЛОБУТАН. Строение(С-С 1.551 А, НСН = 107o), КОНФОРМАЦИЯ – складчатая, отклонение от пл-ти равно 25o. ТОРСИОННОЕ напряжение, банановые связи, угол 104o.

Почти нетОСОБЕННОСТЕЙ ХИМИЧЕСКИХ СВОЙСТВ: Гидрирование в С4Н102/Pt180oС).
Особенности строения оксетанов . ТОРСИОННОЕ напряжение – 4 ккал/м вместо 8.

ЦИКЛОПЕНТАН. Углового напряжения почти нет. В плоском – 10 пар заслоненных С-Н связей (на 10 ккал/м). Конформации : откр . КОНВЕРТ – полукресло –- откр . КОНВЕРТ. ПСЕВДОВРАЩЕНИЕ.

9. ЦИКЛОГЕКСАН – КРЕСЛО. Напряжения нет. Аксиальные и экваториальные атомы. Все С-Н в заторможенной конформации . Переход кресла в твист, (далее – в ванну?) и т.д. 105раз в сек. Быстрые и медленные обменные процессы в ЯМР.

МОНОЗАМЕЩЕННЫЕ ЦГ. Конформеры . Аксиальные игош-бутановые взаимодействия.

СВОБОДНЫЕ КОНФОРМАЦИОННЫЕ ЭНЕРГИИ.– Go, ккал/м: H (0), Me (1.74, ~ 95% е-Ме ), i - Pr (2.1), t - Bu (5.5), Hal (0.2-0.5) Ph (3.1). « t - Bu -якорь, ~ 99,99% е- t - Bu

Билет 27

Алке́ны (олефины, этиленовые углеводороды) — ациклические непредельные углеводороды, содержащие одну двойную связь между атомамиуглерода, образующие гомологический ряд с общей формулой CnH2n. Атомы углерода при двойной связи находятся в состоянии sp² гибридизации, и имеют валентный угол 120°. Простейшим алкеном является этилен (C2H4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил». Тривиальные названия: CH2=CH— «винил», CH2=CH—CH2«аллил».

Химические свойства

Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения иреакции радикального присоединения. Реакции нуклеофильного присоединения обычно требуют наличие сильного нуклеофила и для алкенов не типичны.

Особенностью алкенов являются также реакции циклоприсоединения и метатезиса.

Алкены легко вступают в реакции окисления, гидрируются сильными восстановителями или водородом под действием катализаторов до алканов, а также способны к аллильномурадикальному замещению.

Реакции электрофильного присоединения

В данных реакциях атакующей частицей является электрофил.

Галогенирование

Галогенирование алкенов, проходящее в отсутствие инициаторов радикальных реакций — типичная реакция электрофильного присоединения. Она проводится в среде неполярных инертных растворителей (например: CCl4):

Реакция галогенирования стереоспецифична —- присоединение происходит с противоположных сторон относительно плоскости молекулы алкена[1]

Механизм реакций подобного типа в общем виде:

Гидрогалогенирование

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова:

Однако в присутствии перекисей присоединение происходит преимущественно против этого правила (эффект Хараша)

Это объясняется тем, что реакция в данном случае будет протекать по радикальному механизму и присоединение радикала Br.идет по стерически наиболее доступному концевому атому углерода двойной связи:

Гидрогалогенирование

Присоединение гидридов бора к алкенам и последующее их расщепление в щелочной среде, открытое Г. Брауном в 1958 году, является столь важной реакцией, что за ее обнаружение и изучение в 1979 году ученый был удостоен Нобелевской премии по химии

Присоединение происходит многоступенчато с образованием промежуточного циклического активированного комплекса, причем присоединение бора происходит против правила Марковникова — к наиболее гидрогенизированному атому углерода:

В синтезе используется, обычно, не собственно диборан, а его донорно-акцептоный комплекс с простым эфиром:

Алкилбораны легко расщепляются. Так под действием пероксида водорода в щелочной среде образуются спирты:

Реакция гидроборирования является реакцией син-присоединения — ее результатом становятся цис-аддукты.

Гидратация

Реакция присоединения воды к алкенам протекает в присутствии серной кислоты

Реакция протекает по правилу Марковникова.

Присоединение серной кислоты

H2=CH−CH3 + HO−SO2−OH ® CH3 CH−O−SO2−OH(изопропилсерная кислота) I CH3

Приводимые в различных источниках формулировки правила Марковникова отличаются друг от друга[4].

В оригинальной работе В. В. Марковников писал:

Когда несимметричный алкен соединяется с галогеноводородной кислотой, галоген присоединяется к атому углерода, содержащему меньше атомов водорода, то есть к атому углерода, на который больше влияют другие атомы углерода».

Далее, когда Марковников рассматривал присоединение галогеноводородов к алкенам, содержащим галоген при двойной связи, он добавлял, что «атом галогена присоединяется к атому углерода, уже содержащему атом галогена»

В современных российских и зарубежных изданиях чаще появляется обратная формулировка, в которой обращается внимание на присоединение атома водорода:

При присоединении галогеноводорода к несимметричному алкену атом водорода присоединяется к более гидрогенизированному атому углерода.

В 1875 году Марковников переформулировал правило, расширив его и распространив на присоединение полярных молекул в общем:

Когда ненасыщенная молекула CnHmX присоединяется к другой молекулярной системе YZ при низкой температуре, более отрицательный элемент или группа Y соединяется с менее гидрогенизированным атомом углерода или с тем, который уже был соединён с каким-либо отрицательным элементом; но при более высоких температурах именно элемент Z присоединяется к менее гидрогенизированному атому углерода»

Окисление

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.

1) Окисление KMnO4разбавл. (р. Вагнера)

3H2C=CH2 + 2KMnO4 + 4H2O ® 3 CH2−CH2(этиленгликоль) + 2MnO2 + 2KOH I I OH OH

2) Окисление с KMnO4 конц

При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи и образование кислот или кетонов.

Реакции полимеризации

1) Радикальная полимеризация, инициируемая полимеризация теплом, светом, R

CH2=CH2 ––R˙® R–CH2−CH2 ––C2H4® R−CH2−CH2−CH2−CH2

2) Катионная полимеризация

Катализаторами катионной полимеризации являются кислоты, хлориды алюминия, бора и т.д. Катализатор обычно регенерируется и не входит в состав полимера.
Механизм катионной полимеризации этилена в присутствии кислоты как катализатора можно представить следующим образом.

CH2=CH2 ––H+® CH3−CH2+ ––C2H4® CH3−CH2−CH2−C+H2

3) Анионная полимеризация

Катализаторами анионной полимеризации являются некоторые металлорганические соединения, амиды щелочных металлов и т.д.
Механизм анионной полимеризации этилена под влиянием металлалкилов представляется следующим образом.

CH2=CH2 ––R–M® [R−CH2−CH2]-M+ ––C2H4® [R−CH2−CH2−CH2−CH2]-M+

Билет 28

Алки́ны (иначе ацетиленовые углеводороды) — углеводороды, содержащие тройную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n-2. Атомы углерода при тройной связи находятся в состоянии sp-гибридизации, угол между орбиталями - 180 градусов, располагаются линейно.

Химические свойства

1) Присоединение водорода

2) Присоединение галогенводорода

3) Присоединение воды

C2H5–CºCH + H2O ––HgSO4® [C2H5 C=CH2](енол) ® C2H5– I ø OH C–CH3(метилэтилкетон) II O
     

4) Присоединение синильной кислоты

2. Реакции Окисления.

Алкины окисляются более трудно чем алкены, однако при контролируемом окислении можно сохранить C-C связь и получить в качестве продуктов реакции карбонильные соединения

(глиоксаль) — окисление разбавленной HNO3 в присутствии PdCl2 и NaNO2

(щавелевая кислота) — окисление KMnO4 в кислой среде или HNO3 в присутствии PdCl2.

3. Реакция замещения

4. Реакции полимеризации

Билет 29

Алкадиены — класс углеводородов, содержащих две двойных связи углерод-углерод.

Классификация

В зависимости от взаимного расположения двойных связей диены подразделяются на три группы:

· сопряженные диены, в которых двойные связи разделены одинарной (1,3-диены)

· аллены с кумулированными двойными связями (1,2-диены)

· диены с изолированными двойными связями, в которых двойные связи разделены несколькими одинарными.

Гетероаналоги диенов, в которых один из ненасыщенных углеродных атомов замещён гетероатомом, называются гетеродиенами[1].

Обычно к диенам относят ациклические и циклические 1,3-диены, образующие гомологические ряды общих формул и соответственно, ациклические диены являются структурными изомерами алкинов.

Физические свойства

Низшие диены - бесцветные легкокипящие жидкости (температуры кипения изопрена - 34 °C, 2,2-диметил-1,3-бутадиена — 68.78 °C, 1,3-циклопентадиена — 41.5 °C). 1,3-Бутадиен иаллен (1,2-пропадиен) — газы (Tкип −4,5 °C и −34 °C соответственно).

Сопряженные диены существуют в виде двух конформаций - цисоидной (s-цис-форма) и трансоидной (s-транс-форма), способных переходить друг в друга, более устойчивой является s-транс-форма:

Молекула бутадиена-1,3 СН2=СН-СН=СН2 содержит четыре атома углерода в sp2-гибридизованном состоянии и имеет плоское строение.

p-Электроны двойных связей образуют единое p -электронное облако (сопряженную систему) и делокализованы между всеми атомами углерода.

Порядок связей (число общих электронных пар) между атомами углерода имеет промежуточное значение между 1 и 2, т.е. нет чисто одинарной и чисто двойных связей. Строение бутадиена более точно отражает формула с делокализованными связями.

Аналогично построены молекулы изопрена:

Образование единого p -электронного облака, охватывающего 4 атома углерода:


приводит к возможности присоединения реагента по концам этой системы, т.е. к атомам С1 и С4. Поэтому дивинил и изопрен наряду с присоединением 1 моля реагента по одной из двойных связей (1,2- или 3,4-) вступают в реакции 1,4-присоединения. Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции (с повышением температуры обычно увеличивается вероятность 1,4-присоединения).

Природный каучук

Высокомолекулярный углеводород (C5H8)n, цис-полимер изопрена; содержится в млечном соке (латексе) гевеи, кок-сагыза (многолетнего травянистого растения рода Одуванчик) и других растений. Растворим в углеводородах и их производных (бензине, бензоле, хлороформе,сероуглероде и т. д.). В воде, спирте, ацетоне натуральный каучук практически не набухает и не растворяется. Уже при комнатной температуре натуральный каучук присоединяет кислород, происходит окислительная деструкция (старение каучука), при этом уменьшается его прочность иэластичность. При температуре выше 200 °C натуральный каучук разлагается с образованием низкомолекулярных углеводородов. При взаимодействии натурального каучука с серой, хлористой серой, органическими пероксидами (вулканизация) происходит соединение через атомы серы длинных макромолекулярных связей с образованием сетчатых структур. Это придает каучуку высокую эластичность в широком интервале температур. Натуральный каучук перерабатывают в резину. В сыром виде применяют не более 1 % добываемого натурального каучука (резиновый клей). Каучук открыт де ла Кондамином в Кито (Эквадор) в 1751 г. Более 60 % натурального каучука используют для изготовления автомобильных шин. В промышленных масштабах натуральный каучук производится в Индонезии, Малайзии, Вьетнаме

Синтетические каучуки

Первым синтетическим каучуком, имевшим промышленное значение, был полибутадиеновый (дивиниловый) каучук, производившийся синтезом по методу С. В. Лебедева (анионная полимеризация жидкого бутадиена в присутствии натрия), однако из-за невысоких механических качеств нашёл ограниченное применение.

В Германии бутадиен-натриевый каучук нашёл довольно широкое применение под названием «Буна».

Синтез каучуков стал значительно дешевле с изобретением катализаторов Циглера — Натта.

Изопреновые каучуки — синтетические каучуки, получаемые полимеризацией изопрена в присутствии катализаторов — металлического лития, перекисных соединений. В отличие от других синтетических каучуков изопреновые каучуки, подобно натуральному каучуку, обладают высокой клейкостью и незначительно уступают ему в эластичности.

В настоящее время большая часть производимых каучуков является бутадиен-стирольными или бутадиен-стирол-акрилонитрильными сополимерами.

Каучуки с гетероатомами в качестве заместителей или имеющими их в своём составе часто характеризуются высокой стойкостью к действию растворителей, топлив и масел, устойчивостью к действию солнечного света, но обладают худшими механическими свойствами. Наиболее массовым в производстве и применении каучуками с гетерозаместителями являются хлоропреновые каучуки (неопрен) — полимеры 2-хлорбутадиена.

В ограниченном масштабе производятся и используются тиоколы — полисульфидные каучуки, получаемые поликонденсацией дигалогеналканов (1,2-дихлорэтана, 1,2-дихлорпропана) и полисульфидов щелочных металлов.

Билет 30

Ароматические соединения — циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения. Общая формула СnH2n-6.

Бензол и гомологи

Если в молекуле арена есть несколько одинаковых радикала, то применяются приставки: орто-, мета- и пара-

§ орто- (о-) - два радикала находятся рядом - при соседних атомах углерода (1,2-ди "радикал" бензол);

§ мета- (м-) -два радикала находятся через один атом углерода (1,3 - ди "радикал" бензол)

§ пара- (п-) -два радикала находятся друг против друга - через 2 атома углерода (1,4- ди "радикал" бензол)

Все эти вещества изомерны друг другу. У бензола и его гомологов довольно много изомеров -это обусловлено как количеством атомов, так и геометрией молекулы.

Тривиальные названия:

§ толуол = метилбензол (С6H5CH3);

§ ксилол = все диметилбензолы ( C6H4(CH3)2 );

§ кумол = изопропилбензол (C6H5-CH(CH3)2 )

Для изучения строения бензола необходимо просмотреть анимационный фильм "Строение бензола" (Данный видеоматериал доступен только на CD-ROM). Текст, сопровождающий этот фильм, в полном объеме перенесен в данный подраздел и ниже следует.

"В 1825 году английский исследователь Майкл Фарадей при термическом разложении ворвани выделил пахучее вещество, которое имело молекулярную формулу C6Н6. Это соединение, называемое теперь бензолом, является простейшим ароматическим углеводородом.

Распространенная структурная формула бензола, предложенная в 1865 году немецким ученым Кекуле, представляет собой цикл с чередующимися двойными и одинарными связями между углеродными атомами:

Однако физическими, химическими, а также квантово-механическими исследованиями установлено, что в молекуле бензола нет обычных двойных и одинарных углерод–углеродных связей. Все эти связи в нем равноценны, эквивалентны, т.е. являются как бы промежуточными "полуторными " связями, характерными только для бензольного ароматического ядра. Оказалось, кроме того, что в молекуле бензола все атомы углерода и водорода лежат в одной плоскости, причем атомы углерода находятся в вершинах правильного шестиугольника с одинаковой длиной связи между ними, равной 0,139 нм, и все валентные углы равны 120. Такое расположение углеродного скелета связано с тем, что все атомы углерода в бензольном кольце имеют одинаковую электронную плотность и находятся в состоянии sp2 - гибридизации. Это означает, что у каждого атома углерода одна s- и две p- орбитали гибридизованы, а одна p- орбиталь негибридная. Три гибридных орбитали перекрываются: две из них с такими же орбиталями двух смежных углеродных атомов, а третья – с s- орбиталью атома водорода. Подобные перекрывания соответствующих орбиталей наблюдаются у всех атомов углерода бензольного кольца, в результате чего образуются двенадцать - связей, расположенных в одной плоскости.

Четвертая негибридная гантелеобразная p- орбиталь атомов углерода расположена перпендикулярно плоскости направления - связей. Она состоит из двух одинаковых долей, одна из которых лежит выше, а другая - ниже упомянутой плоскости. Каждая p- орбиталь занята одним электроном. р- Орбиталь одного атома углерода перекрывается с p- орбиталью соседнего атома углерода, что приводит, как и в случае этилена, к спариванию электронов и образованию дополнительной - связи. Однако в случае бензола перекрывание не ограничивается только двумя орбиталями, как в этилене: р- орбиталь каждого атома углерода одинаково перекрывается с p- орбиталями двух смежных углеродных атомов. В результате образуются два непрерывных электронных облака в виде торов, одно из которых лежит выше, а другое – ниже плоскости атомов (тор – это пространственная фигура, имеющая форму бублика или спасательного круга). Иными словами, шесть р- электронов, взаимодействуя между собой, образуют единое - электронное облако, которое изображается кружочком внутри шестичленного цикла:

С теоретической точки зрения ароматическими соединениями могут называться только такие циклические соединения, которые имеют плоское строение и содержат в замкнутой системе сопряжения (4n+2) - электронов, где n – целое число. Приведенным критериям ароматичности, известным под названием правила Хюккеля, в полной мере отвечает бензол. Его число шесть - электронов является числом Хюккеля для n=1, в связи с чем, шесть - электронов молекулы бензола называют ароматическим секстетом".

Примером ароматических систем с 10 и 14 - электронами являются представители многоядерных ароматических соединений –
нафталин и
антрацен .

Ароматичность — особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можно было бы ожидать только при одном сопряжении.

Ароматичность не имеет непосредственного отношения к запаху органических соединений, и является понятием, характеризующим совокупность структурных и энергетических свойств некоторых циклических молекул, содержащих систему сопряженных двойных связей. Термин «ароматичность» был предложен потому, что первые представители этого класса веществ обладали приятным запахом.

Химические свойства

Несмотря на то, что бензол по составу является ненасыщенным соединением, для него не характерны реакции присоединения. Типичными реакциями бензольного кольца являются реакции замещения атомов водорода – точнее говоря, реакции электрофильного замещения.

Рассмотрим примеры наиболее характерных реакций этого типа.

1) Галогенирование. При взаимодействии бензола с галогеном (в данном случае с хлором) атом водорода ядра замещается галогеном.

+ Cl2AlCl3® (хлорбензол) + H2O

Реакции галогенирования осуществляются в присутствии катализатора, в качестве которого чаще всего используют хлориды алюминия или железа.

2) Нитрование. При действии на бензол нитрующей смеси атом водорода замещается нитрогруппой (нитрующая смесь – это смесь концентрированных азотной и серной кислот в соотношении 1:2 соответственно).

+ HNO3H2SO4® (нитробензол) + H2O

3) Сульфирование. Реакция сульфирования осуществляется концентрированной серной кислотой или олеумом (олеум – это раствор серного ангидрида в безводной серной кислоте). В процессе реакции водородный атом замещается сульфогруппой, приводя к моносульфокислоте.

+ H2SO4SO3® (бензолсульфокислота) + H2O

4) Алкилирование (реакция Фриделя-Крафтса). При действии на бензол алкилгалогенидов в присутствии катализатора (хлористого алюминия) осуществляется замещение алкилом атома водорода бензольного ядра.

+ R–Cl –AlCl3® (R-углеводородный радикал) + HCl

Наши рекомендации