При помощи аэрозольных баллонов
Принцип действия аэрозольного баллона состоит в том, что помещенный в упаковку препарат смешивается с эвакуирующей жидкостью, давление насыщенного пара которой в интервале температур, при которых эксплуатируется упаковка, выше атмосферного.
Выброс смеси из баллона происходит под действием давления насыщенного пара, находящегося над жидкостью.
Известно, что давление насыщенного пара любого стабильного вещества определяется только температурой и не зависит от объема. Поэтому в течение всего времени работы баллона давление в нем будет оставаться постоянным, следовательно, практически постоянной будет оставаться дальность полета частиц и угол конуса распыления.
В зависимости от характера взаимодействия распыляемого вещества с эвакуирующей жидкостью и его агрегатного состояния, системы в аэрозольной упаковке будут состоять из различного числа фаз. В случае взаимной растворимости компонентов образуется гомогенный жидкий раствор, в других случаях – эмульсия или суспензия и, наконец, гетерогенная система, когда препарат и эвакуирующая жидкость образуют макроскопически неоднородную систему. Очевидно, что в первом случае в аэрозольной упаковке находится двухфазная система – жидкость и насыщенный пар. При выпуске в атмосферу эмульсии или суспензии происходит дробление только дисперсионной среды – получаемые частицы в лучшем случае будут иметь размеры, которые они имели в жидкой фазе.
Когда препарат и эвакуирующая жидкость не смешиваются или ограниченно смешиваются между собой, причем одна из жидкостей диспергирована в другой в виде мелких капелек, образуются эмульсии.
Характер системы, образующейся при выходе продукта из упаковки в атмосферу, зависит от того, какая из жидкостей является дисперсной фазой. Если дисперсная фаза – это препарат, то образуется аэрозоль. Если дисперсной фазой является эвакуирующая жидкость, то получается пена. Размер частиц, получаемых при помощи аэрозольных баллонов, зависит от физико-химических свойств веществ, входящих в состав препарата, соотношения компонентов, конструктивных особенностей баллона и температурных условий его эксплуатации.
Степень дисперсности можно регулировать:
• варьируя размеры выходного отверстия;
• изменяя давление насыщенного пара эвакуирующей жидкости;
• меняя количественное соотношение препарата и эвакуирующего агента.
ЭВАКУИРУЮЩИЕ ВЕЩЕСТВА
Важнейшим вспомогательным компонентом является вещество, которое обеспечивает выброс препарата в атмосферу и последующее его диспергирование. Эти вещества получили название пропеллентов (лат. «рrоpellere» – гнать). Пропеллент должен выполнять две функции:
• создавать необходимое давление для выброса препарата;
• диспергировать продукт, выпущенный в атмосферу.
В качестве пропеллентов используют фреоны и сжатые газы. Фреоны – это низкомолекулярные фторорганические соединения алифатического ряда [Cn(H, C1, F) 2n + 2 ].
Принята следующая система обозначений фреонов: последняя цифра (число единиц) означает число атомов фтора в молекуле, предшествующая цифра (число десятков) – число атомов водорода, увеличенное на единицу, и третья (число сотен) – число атомов углерода, уменьшенное на единицу. Например: F–22 – это CHC1F2, F–114 – это C2CI2F4.
Вещества, состоящие из молекул циклического строения, также имеют цифровое обозначение, но перед цифрами ставится буква «С», например: С318 – С4F8 (октафторциклобутан).
В качестве сжатых газов применяют N2, N2O, CO2 и др.
ПРЕИМУЩЕСТВА
АЭРОЗОЛЬНЫХ УПАКОВОК
1. Перевод препарата в мелкодисперсное состояние происходит за счет потенциальной энергии сжиженного пропеллента и не требуется применение каких-либо посторонних устройств.
2. Для создания аэрозолей не нужны какие-либо насадки.
3. В единицу времени можно диспергировать значительное количество вещества с получением частиц малого размера – в случае применения других способов потребовалось бы гораздо больше энергии.
4. Режим туманообразования стабилен: размер получаемых частиц, дальность их полета, угол в вершине конуса в течение всего времени эксплуатации мало меняются.
5. Можно заранее фиксировать дозировку распыляемого вещества.
6. Можно задавать размер частиц.
7. Степень полидисперсности аэрозоля невелика.
8. Все частицы имеют одинаковый химический состав–
9. Обеспечивается стерильность распыляемых препаратов.
10. Препарат в упаковке не соприкасается с кислородом воздуха, что обеспечивает его стабильность.
11. Автоматически закрывающийся клапан исключает возможность потери за счет проливания или испарения неиспользованной части продукта.
12. Упаковка постоянно готова к работе.
13. Упаковка компактна. Дает возможность индивидуального или коллективного использования.
Первые аэрозольные упаковки появились в 30–х гг. XX в. в Европе. Во время Второй мировой войны инициативу в области их разработки захватили США. В 1941 г. была создана аэрозольная упаковка – средство для уничтожения насекомых, упакованное в стеклянный сосуд. Пропеллентом служил фреон–12.
В промышленных масштабах производство началось после Второй мировой войны в США, а затем в других странах мира.
ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ
АЭРОЗОЛЕЙ
Широкое использование аэрозолей обусловлено их высокой эффективностью. Известно, что увеличение поверхности вещества сопровождается увеличением его активности. Незначительное количество вещества, распыленное в виде аэрозоля, занимает большой, объем и обладает большой реакционной способностью. В этом состоят преимущества аэрозолей перед другими дисперсными системами.
Аэрозоли применяются:
• в различных областях техники, в том числе в военной и космической;
• в сельском хозяйстве;
• в здравоохранении;
• в метеорологии;
• в быту и т. д.
Остановимся подробнее на применении аэрозольных упаковок.
В настоящее время насчитывается более 300 видов товаров в аэрозольных упаковках.
Первая группа: средства бытовой химии.
• Инсектициды – препараты для уничтожения насекомых.
• Средства против моли.
• Инсектициды для обработки домашних животных.
• Средства защиты комнатных растений и плодово–ягодных культур от
грибковых болезней и вредителей.
• Лаки и краски.
• Освежители воздуха.
• Полирующие и чистящие составы.
Вторая группа:парфюмерно –косметические средства.
• Средства ухода за волосами (лаки, шампуни и т. д.).
• Пены и гели для бритья.
• Кремы для рук и ног.
• Масло для и от загара.
• Дезодоранты.
• Духи, одеколоны, туалетная вода.
Третья группа:медицинские аэрозоли.
Четвертая группа: технические аэрозоли.
• Смазочные масла.
• Антикоррозионные покрытия.
• Защитные пленки.
• Сухие смазки.
• Эмульсии для охлаждения резцов на сверлильных станках.
Пятая группа: пищевые аэрозоли.
ПИЩЕВЫЕ АЭРОЗОЛИ
Первые баллоны с пищевыми продуктами появились в 1947 г. в США. Они содержали кремы для отделки тортов и пирожных и применялись только в ресторанах, которые возвращали их для повторного заполнения. Массовое производство этого вида аэрозольных упаковок началось лишь в 1958 г.
Аэрозольные упаковки пищевых продуктов можно разделить на три основных группы:
• упаковки, требующие хранения при низкой температуре;
• упаковки с последующей тепловой обработкой;
• упаковки без последующей тепловой обработки.
В аэрозольных упаковках выпускаются пищевые продукты трех видов: кремы, жидкости, пасты. В аэрозольных упаковках можно купить приправы для салатов, плавленый сыр, соки, корицу, майонез, томатный сок, 30% –е взбитые сливки и т. д.
Рост производства пищевых аэрозолей объясняется следующим:
• преимуществами перед обычными видами тары;
• разработкой новых пропеллентов;
• усовершенствованием технологии заполнения.
Преимущества аэрозольной упаковки пищевых продуктов:
• удобство использования;
• экономия времени;
• пища упаковывается в подготовленном к употреблению состоянии и
выдается из упаковки в однородном виде;
• нет утечки продуктов;
• влага не теряется и не проникает в упаковку;
• не теряется аромат;
• продукт сохраняется в стерильном виде.
К рецептурам пищевых аэрозолей предъявляются следующие требования:
1. Пропелленты должны быть высокой чистоты, не быть токсичными, не иметь вкуса и запаха. В настоящее время используются диоксид углерода, закись азота, азот, аргон и фреон С318.
2. Сжатые газы, имеющие весьма ограниченную растворимость в водных растворах, не могут участвовать в образовании пены, а это необходимо для взбитых сливок, декоративных кремов, муссов и т. п. С этими продуктами предпочтительнее использовать фреон С318, хотя он значительно дороже.
Таблица 18.4
Примеры рецептур различных пищевых аэрозолей
Ингредиенты, входящие в состав аэрозолей | Количество, % массы |
1. Сбитый крем для закусочных бутербродов | |
Творог со сливками | 50 –60 |
Микрокристаллическая целлюлоза | 25 –30 |
Растительное масло и ароматические добавки | 6 –10 |
Фреон С318 | |
2. Сахарная глазурь для отделки кондитерских изделий | |
Сахар | 55 –60 |
Вода | 15 –25 |
Растительное масло | |
твердое | 9 –14 |
жидкое | 3 –5 |
Соль поваренная | 0,1 –0,3 |
Микрокристаллическая целлюлоза | 1,0 |
Отдушки | 1 –4 |
Эмульгаторы | 0,5 –1 |
Фреон С318 | |
3. Мусс | |
Мед или фруктовый сироп | 78 –83 |
Вода | 7 –9 |
Растительное масло (твердое) | 3 –5 |
Микрокристаллическая целлюлоза | 1 –2 |
Моноглицериды | 0,5 –1 |
Полиэфиры сорбита | 0,05 –1 |
Фреон С318 | |
4. Декоративный соус в виде пены | |
Горчица (тонко измельченный порошок) | 0,94 |
Лимонный сок | 4,72 |
Уксус | 9,44 |
Вода | |
Полисорбат 80 | 0,5 |
Эмульгирующая смесь | 2,25 |
Микрокристаллическая целлюлоза | 2,5 |
Добавки – Стабилизаторы пены | 4,59 |
Фреон С318 + закись азота (Р=8 атм) | |
5. Масляно–уксусная заправка в виде пены | |
Вода | 11,80 |
Соль | 1,96 |
Сахар | 1,47 |
Продолжение таблицы 18.4
Винный уксус | 22,81 |
Оливковое масло | 61,75 |
Полисорбат 80 | 0,10 |
Чесночное масло | 0,12 |
Масло черного перца | 0,10 |
Фреон С318 | 10,0 |
6. Заправка для жареных кукурузных зерен | |
Соль (экстра) | 10,00 |
Растительное масло | 58,97 |
Прочие добавки из масел | 0,03 |
Краситель | 1,00 |
Фреон–С318 | 10,00 |
3. Использование фреонов дает еще одно преимущество: сжиженные газы вводятся в рецептуры продуктов, которые выделяются в виде пены, в количестве не более 10% веса, при этом они занимают сравнительно небольшой объем. Это позволяет загрузить в баллон значительно больше продуктов – 90% емкости баллона (в упаковках со сжатым газом лишь 50%) и гарантирует полную выдачу продукта из упаковки.
4. Выбор пропеллента диктуется типом пищевого продукта и предполагаемой формой его выдачи (крем, жидкость, паста). Хорошо зарекомендовали себя смеси СО2 и закиси азота высокой чистоты. Для получения пены применяются смеси фреона С318 с закисью азота. Упакованный с этой смесью крем для отделки тортов дает устойчивую пену, хорошо сохраняющую цвет. Для сиропов самым подходящим пропеллентом считается СО2.
Качество выдачи содержимого из баллона зависит от следующих факторов:
• технологии приготовления продукта;
• стабилизатора (широко используется микрокристаллическая целлюлоза);
• правильного выбора баллона и клапана.
Для корицы и лимонного сока разработана управляемая распылительная головка, которая по желанию может выдавать продукты либо в виде капель, либо в виде струи. Для искусственных подсластителей применяются дозирующие клапаны, одна выдаваемая ими доза соответствует одному куску пиленого сахара и т. д.
АЭРОЗОЛЬНЫЙ ТРАНСПОРТ
В мукомольной, крупяной, комбикормовой промышленности широко применяется пневматический транспорт, который создает условия для внедрения автоматизации, повышения производительности труда и снижения себестоимости. Однако применение пневматического транспорта сопряжено с большой затратой электроэнергии на перемещение большого объема воздуха (1 кг воздуха перемещает 5 –6 кг сыпучего материала).
Более прогрессивным является аэрозольный транспорт, при котором большая концентрация материала в воздушном потоке достигается благодаря аэрации муки в начале транспортирования и высокому давлению воздуха. Аэрация нарушает сцепление между частицами муки, и она приобретает свойство текучести, подобно жидкости, в результате 1 кг воздуха перемещает до 200 кг муки,
Аэрозольтранспортная установка состоит из питателя, нагнетателя, материалопровода и разгрузителя. Основным элементом является питатель, в котором смешиваются воздух с материалом и смеси сообщается начальная скорость, что обеспечивает ее подачу в материалопровод.
Внедрение аэрозольтранспорта дает возможность повысить производительность мельниц и снизить удельный расход электроэнергии.
Аэрозольному транспорту принадлежит будущее не только в мукомольной, но и в других отраслях промышленности, связанных с использованием сыпучих материалов и порошков.
ЗАКЛЮЧЕНИЕ
Аэрозоли – это микрогетерогенные системы, в которых частицы твердого вещества или капельки жидкости взвешены в газе (Т/Г или Ж/Г).
По агрегатному состоянию дисперсной фазы аэрозоли подразделяют на:
• туман (Ж/Г);
• дым, пыль (Т/Г);
•смог [(Ж+Т)/Г)].
По дисперсности аэрозоли бывают: туман, дым, пыль. Как и другие микрогетерогенные системы, аэрозоли могут быть получены из истинных растворов (конденсационные методы) или из грубодисперсных систем (диспергационные методы).
Капельки воды в туманах всегда сферические, а твердые частицы дыма могут иметь разную форму в зависимости от их происхождения.
Благодаря очень маленьким размерам частиц дисперсной фазы они имеют развитую поверхность, на которой могут активно протекать адсорбция, горение, другие химические реакции.
Молекулярно–кинетические свойства аэрозолей обусловлены:
малой концентрацией частиц дисперсной фазы;
малой вязкостью дисперсионной среды;
малой плотностью дисперсионной среды.
В зависимости от размеров частиц дисперсной фазы они могут либо быстро седиментировать (при r >> 1 мкм), либо прилипать к стенкам сосуда или слипаться (при r << 0,01 мкм). Наибольшей устойчивостью обладают частицы промежуточных размеров.
Для аэрозолей характерны явления термофореза, термопреципитации, фотофореза.
Оптические свойства аэрозолей сходны со свойствами лиозолей, однако рассеяние света ими выражено значительно сильнее из–за больших различий показателей преломления дисперсной фазы и дисперсионной среды.
Специфичность электрических свойств аэрозолей состоит в том, что на частицах не возникает ДЭС, заряд частиц носит случайный характер и мал по величине. При сближении частиц не возникает электростатическое отталкивание и происходит быстрая коагуляция.
Разрушение аэрозолей является важной проблемой и осуществляется путем седиментации, коагуляции, пылеулавливания и другими методами.
ВОПРОСЫ ДЛЯ САМОКАНТРОЛЯ
1. Какие системы называют аэрозолями, как они обозначаются?
2. По каким признакам и как классифицируют аэрозоли?
3. На какие группы делятся методы получения аэрозолей?
4. Какими основными факторами определяются свойства аэрозолей?
5. Е чем состоит сходство и различие оптических свойств аэрозолей и
лиозолей?
6. В чем состоит сущность таких явлений, как термофорез,
термопреципитация, фотофорез?
7. В чем состоит отличие электрических свойств аэрозолей и лиозолей?
8. Какие факторы способствуют коагуляции аэрозолей?
9. Какими методами может осуществляться разрушение аэрозолей?
10. Каков принцип действия аэрозольного баллончика?
11. Какие вещества называются пропеллентами? Какие пропелленты вы
знаете?
Изучив главу 18, вы должны знать:
• классификацию аэрозолей;
• методы получения аэрозолей;
• особенности молекулярно–кинетических, оптических и электрических
свойств;
• методы разрушения аэрозолей.
ГЛАВА 19
ПОРОШКИ
Порошками называются высококонцентрированные дисперсные системы, в которых дисперсной фазой являются твердые частицы, а дисперсионной средой – воздух или другой газ. Условное обозначение: Т/Г.
В порошках частицы дисперсной фазы находятся в контакте друг с другом. Традиционно к порошкам относят большинство сыпучих материалов, однако в узком смысле термин «порошки» применяют к высокодисперсным системам с размером частиц, меньшим некоторого критического значения, при котором силы межчастичного взаимодействия становятся соизмеримыми с массой частиц. Наибольшее распространение имеют порошки с размерами частиц от 1 до 100 мкм. Удельная межфазная поверхность таких порошков меняется в пределах от нескольких м2/г (сажа) до долей м2/г (мелкие пески).
От аэрозолей с твердой дисперсной фазой (тоже Т/Г) порошки отличаются гораздо большей концентрацией твердых частиц. Порошок получается из аэрозоля с твердой дисперсной фазой при его седиментации. В порошок превращается также суспензия (Т/Ж) при ее высушивании. С другой стороны, и аэрозоль, и суспензия могут быть получены из порошка.
КЛАССИФИКАЦИЯ ПОРОШКОВ
1. По форме частиц:
• равноосные (имеют примерно одинаковые размеры по трем осям);
• волокнистые (длина частиц гораздо больше ширины и толщины);
• плоские (длина и ширина значительно больше толщины).
2. По межчастичному взаимодействию:
• связнодисперсные (частицы сцеплены между собой, т. е. система обладает
некоторой структурой);
• свободнодисперсные (сопротивление сдвигу обусловлено только трением
между частицами).
3. Классификация по размерам частиц дисперсной фазы:
• песок (2 • 10 5 d 2 • 10 3) м;
• пыль (2 • 10 6 d 2 • 10 5) м;
• пудра (d < 2 • 10 6) м.
МЕТОДЫ ПОЛУЧЕНИЯ ПОРОШКОВ
Порошки, так же как любую другую дисперсную систему, можно получить двумя группами методов:
• со стороны грубодисперсных систем – диспергационными методами;
• со стороны истинных растворов – конденсационными методами.
Выбор метода зависит от природы материала, назначения порошка и экономических факторов.
ДИСПЕРГАЦИОННЫЕ МЕТОДЫ
Производится дробление сырья на вальцовых, шаровых, вибрационных или коллоидных мельницах с последующим разделением на фракции, так как в результате помола получаются полидисперсные порошки (например, мука одного и того же сорта может содержать частицы от 5 до 60 мкм).
Эффективное диспергирование может быть произведено при перетирании весьма концентрированных суспензий.
Для облегчения диспергирования применяют понизители твердости, в качестве которых выступают ПАВ. В соответствии с правилом уравнивания полярностей, адсорбируясь на поверхности измельчаемого твердого тела, они уменьшают поверхностное натяжение, снижая энергозатраты при диспергировании и повышая дисперсность измельченной фазы.
В некоторых случаях перед диспергированием проводят предварительную обработку материала. Так, титан или тантал нагревают в атмосфере водорода, переводя в гидриды, которые измельчают и нагревают в вакууме – получаются чистые металлические порошки.
При получении чешуйчатых порошков, которые входят в состав красок и пиротехнических составов, для измельчения используют шаровые мельницы. Шары расплющивают и прокатывают частицы измельчаемого материала.
Порошки с частицами сферической формы из тугоплавких металлов (вольфрам, молибден, ниобий) получают в низкотемпературной плазме дугового и высокочастотного разряда. Проходя через зону плазмы, частицы плавятся и принимают сферическую форму, затем охлаждаются и затвердевают.
В ходе диспергирования химический состав материала не изменяется.
КОНДЕНСАЦИОННЫЕ МЕТОДЫ
Эти методы молено разделить на две группы.
Первая группа методов связана с осаждением частиц вследствие коагуляции лиофобных золей. В результате упаривания раствора или частичной замены растворителя (снижение растворимости) образуется суспензия, а после ее фильтрации и сушки получаются порошки.
Вторая группа методов связана с проведением химических реакций (химическая конденсация). Методы химической конденсации можно классифицировать на основе типа используемой реакции:
1. Обменные реакции между электролитами.
Например, осажденный мел (зубной порошок) получают в результате реакции:
Na2CO3 + СаС12 = СаСО3 + 2 NaCl.
2. Окисление металлов.
Например, высокодисперсный оксид цинка, являющийся основным компонентом цинковых белил, получают окислением паров цинка воздухом при 300°С.
3. Окисление углеводородов.
Различные виды сажи, которую применяют при производстве резины, пластмасс, типографской краски получают сжиганием газообразных или жидких углеводородов при недостатке кислорода.
4. Восстановление оксидов металлов.
Восстановление природным газом, водородом или твердыми восстановителями используется для получения высокодисперсных металлических порошков.
5. Термическая диссоциация карбонилов металлов.
Карбонилы Ме(СО)n – летучие соединения, которые образуются при обработке металлов оксидом углерода при давлении 200 атм и температуре примерно 200 С. При нагревании карбонилы испаряются и разлагаются, образуя высокодисперсные металлические порошки.
6. Электролиз водных растворов солей.
Этим методом получают высокодисперсные порошки металлов и сплавов высокой степени чистоты.
Таким образом, методы химической конденсации связаны с изменением химического состава материалов.