Пептиды и белки: природные источники, пищевая ценность, уровни структурной организации белковых молекул, физико-химические свойства

Белки — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью.

Пептиды - семейство веществ, молекулы которых построены из двух и более остатковаминокислот, соединённых в цепь пептидными (амидными) связями —C(O)NH—. Обычно подразумеваются пептиды, состоящие из α-аминокислот, однако термин не исключает пептидов, полученных из любых других аминокарбоновых кислот.

Природные источники:

Главным источником пищевого белка являются сельскохозяйственные продукты -- мясо, молоко, пшеница, рожь, кукуруза, рис, соя, горох, фасоль, различные овощи и фрукты; значительные количества белка содержат рыба и продукты моря.

Пищевая ценность:

Питательные свойства белков обычно определяют по химической и
биологической ценности. Для этого проводят полный гидролиз белка,
выявляют его аминокислотный состав и сравнивают с белком-стандартом. В результате анализа определяют химическую ценность данного белка. Все белки значительно различаются по аминокислотному составу. Некоторые из них содержат полный набор незаменимых аминокислот в оптимальных соотношениях.

Уровни структурной организации:

К. Линдстрём-Ланг предложил выделять 4 уровня структурной организации белков:

  • Первичная структура — последовательность аминокислотных остатков в полипептидной цепи. Первичную структуру белка, как правило, описывают, используя однобуквенные или трёхбуквенные обозначения для аминокислотных остатков.
  • Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.
  • Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

1)ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);

2)ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

3)водородные связи;

4)гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

  • Четвертичная структура — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Физико-химические свойства:

        • Амфотерность

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства.

        • Растворимость

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора. Белки также делятся на гидрофильные и гидрофобные (водооталкивающие). К гидрофильным относится большинство белков цитоплазмы, ядра и межклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относится большинство белков, входящих в состав биологических мембран.

        • Денатурация

Денатурацией белка называют любые изменения в его биологической активности и/или физико-химических свойствах, связанные с потерей четвертичной, третичной или вторичной структуры. В зависимости от природы денатурирующего агента выделяют механическую (сильное перемешивание или встряхивание), физическую (нагревание, охлаждение, облучение, обработка ультразвуком) и химическую (кислоты и щёлочи, поверхностно-активные вещества, мочевина) денатурацию.

Денатурация белка может быть полной или частичной, обратимой или необратимой. Самый известный случай необратимой денатурации белка в быту — это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения водорастворимых белков с помощью солей аммония, и используется как способ их очистки.

Наши рекомендации