Кристаллическое состояние вещества

Агрегатные состояния вещества.

В этом разделе мы рассмотрим агрегатные состояния, в которых пребывает окружающая нас материя и силы взаимодействия между частицами вещества, свойственные каждому из агрегатных состояний.

Принято считать, что вещество может находиться в одном из трёх агрегатных состояниях:

1. Состояние твёрдого тела,

2. Жидкое состояние и

Газообразное состояние.

Часто выделяют четвёртое агрегатное состояние – плазму.

Иногда, состояние плазмы считают одним из видов газообразного состояния.

Плазма — частично или полностью ионизированный газ, чаще всего существующий при высоких температурах.

Плазма является самым распространённым состоянием вещества во вселенной, поскоьку материя звёд пребывает именно в этом состоянии.

Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.

Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии. Но по мере нагрева они становятся жидкостями, затем газами. При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы.

Кристаллическое состояние вещества - student2.ru

Газ

Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος) характеризующееся очень слабыми связями между составляющими его частицами.

Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) растояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы.


Кристаллическое состояние вещества - student2.ru


Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ — изотропное вещество, то есть его свойства не зависят от направления.

При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие — подниматься вверх.

Газ имеет высокую сжимаемость — при увеличении давления возрастает его плотность. При повышении температуры расширяются.

При сжатии газ может перейти в жидкость, но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К.

Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ — сублимацией.

Твёрдое тело

Состояние твёрдого тела в сравнении с другими агрегатными состояниямихарактеризуется стабильностью формы.

Различают кристаллические и аморфные твёрдые тела.

Кристаллическое состояние вещества

Стабильность формы твёрдых тел связана с тем, что большинство, находящихся в твёрдом состоянии имеет кристалическое строение.

В этом случае расстояния между частицами вещества малы, а силы взаимодействия между ними велики, что и определяет стабильность формы.

В кристаллическом строении многих твёрдых тел легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов и пр.) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствии различного отражения ими света.

В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.

Формы кристаллов

Каждое вещество образует кристаллы совершенно определённой формы.

Разнообразие кристаллических форм может быть сведено к семи группам:

1. Триклинная (параллелепипед),

2.Моноклинная (призма с параллелограммом в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная,

6. Гексагональная (призма с основанием правильного центрированного
шестиугольника),

7. Кубическая (куб).


Кристаллическое состояние вещества - student2.ru

Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристализуются вкубической системе. Простейшими формами этой системы являются куб, октаэдр, тетраэдр.

Магний, цинк, лёд, кварц кристализуются в гексагональной системе. Основные формы этой системы – шестигранные призмы и бипирамида.

Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.

Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.

Анизотропия

Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией.

Внутреннее строение кристаллов. Кристаллические решётки.

Внешняя форма кристалла отражает его внутреннее строение и обусловлена правильным расположением частиц, составляющих кристалл, - молекул, атомов или ионов.

Это расположение можно представить в виде кристаллической решётки – пространственного каркаса, образованного пересекающимися прямыми линиями. В точках пересечения линий – узлах решётки – лежат центры частиц.


Кристаллическое состояние вещества - student2.ru

В зависимости от природы частиц, находящихся в узлах кристаллической решётки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают следующие виды кристаллических решёток:

1. молекулярные,

2. атомные,

3. ионные и

4. металлические.

Молекулярные и атомные решётки присущи веществам с ковалентной связью, ионные – ионным соединениям, металические – металам и их сплавам.

· Атомные кристаллические решётки

В узлах атомных решёток находятся атомы. Они связаны друг с другомковалентной связью.

Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежаталмаз, кремний и некоторые неорганические соединения.

Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностьюковалентной связи.

· Молекулярные кристаллические решётки

В узлах молекулярных решёток находятся молекулы. Они связаны друг с другоммежмолекулярными силами.

Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы, за исключением углерода и кремния, все органические соединения с неионной связью имногие неорганические соединения.

Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.

· Ионные кристаллические решётки

В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы. Они связаны друг с другом силамиэлектростатического притяжения.

К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов.

По прочности ионные решётки уступают атомным, но превышают молекулярные.

Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.

· Металлические кристаллические решётки

В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны.


Кристаллическое состояние вещества - student2.ru

Наличием свободных электронов в кристаллических решётках металлов можно объяснить их многие свойства: пластичность, ковкость, металлический блеск, высокую электро- и теплопроводность

Существуют вещества, в кристаллах которых значительную роль играют два рода взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентной связью, а в других – металлической. Поэтому решётку графита можно рассматривать и как атомную, и как металлическую.

Кристаллическое состояние вещества - student2.ru

Во многих неорганических соединениях, например, в BeO, ZnS, CuCl, связь между частицами, находящимися в узлах решётки, является частично ионной, а частичноковалентной. Поэтому решётки подобных соединений можно рассматривать как промежуточные между ионными и атомными.

Наши рекомендации