Электропроводность диэлектриков
Электропроводность диэлектриков определяется в основном перемещением ионов. На концентрацию ионов оказывают влияние: состав материала, температура, облучение материала частицами высоких энергий. Концентрация подвижных носителей заряда в полярных материалах, как правило, выше, чем в неполярных. Это связано с тем, что ионы примесей электрически взаимодействуют с дипольными моментами полярных молекул, поэтому очистка полярных материалов от примесей затруднена.
Влияние температуры на электропроводность диэлектриков
При повышении температуры энергия системы повышается на величину kT и вероятность выхода иона из потенциальной ямы возрастает (см. рис.2 в конспекте 1). Поэтому электропроводность диэлектриков при повышении температуры растет в соответствии с выражением:
g=g0exp(Ea/kT) (2.1)
Рис. 25. Зависимость электропроводности от температуры. |
где: g- удельная электропроводность диэлектрика, gо -константа, Ea - энергия активации выхода иона из потенциальной ямы, kT- тепловая энергия системы.
Влияние напряженности поля на электропроводность диэлектриков
При сравнительно небольших значениях напряженности поля электропроводность диэлектриков следует закону Ома. Однако при повышении напряженности поля электропроводность перестает следовать закону Ома. При дальнейшем повышении напряженности поля возможны два случая: в первом электропроводность быстро нарастает с ростом напряженности поля (рис. 26 а), а во втором - вначале наступает насыщение электропроводности, и лишь затем в сильных полях наблюдается ее резкий рост (рис. 26 б).
Первый случай наблюдается в загрязненных диэлектриках и чистых диэлектриках с ионной связью, в которых при увеличении напряженности поля происходит размножение заряженных частиц. Второй случай типичен для неионных диэлектриков высокой чистоты, в которых число заряженных частиц ограничено, что и вызывает насыщение электропроводности. В очень сильных полях происходит размножение ионов в результате перехода к пробою диэлектриков.
Рис.26. Зависимость электропроводности от напряженности поля для загрязненных диэлектриков и чистых диэлектриков с ионной связью (а) и неионных кристаллов высокой чистоты (б). |
Поляризация диэлектриков
Поляризацией называется такое состояние диэлектрика, когда суммарный электрический момент отличен от нуля. Появление поляризации является следствием воздействия различных факторов: электрического поля, температуры, механических напряжений и др. В большинстве диэлектриков поляризация возникает под действием электрического поля, По электрической структуре все диэлектрики можно разделить на полярные и неполярные. У полярных диэлектриков структурные единицы вещества имеет собственный дипольный момент. У неполярных диэлектриков в отсутствии внешнего поля дипольного момента нет. При помещении диэлектрика в электрическое поле диполи в полярных диэлектриках поворачиваются по полю. В неполярных диэлектриках внешнее электрическое поле приводит к смещению зарядов внутри электрически нейтральных молекул, что также приводит к появлению электрических диполей. Таким образом, внутри диэлектрика возникает собственное поле, направленное противоположно внешнему полю. В итоге напряженность внешнего поля в диэлектрике ослабевает в e0eраз.
Величина дипольных моментов (m), наводимых внешним полем, пропорциональна напряженности внешнего поля:
m=aE (2.2)
где aкоэффициент пропорциональности, называемый поляризуемостью.
Суммарный дипольный момент в единице объема тела V является численной характеристикой поляризации (Р)
(2.3)
Диэлектрическую проницаемость можно определить как отношение вектора электрического смещения D к напряженности Е внешнего поля, вызвавшего это смещение:
e= (2.4)
Поскольку вектор электрического смещения является суперпозиций напряженности электрического смещения и поляризации:
D=E+P (2.5)
то диэлектрическую проницаемость можно выразить как:
e= 1+ P/E (2.6)
По механизму смещения заряженных частиц различают электронную, ионную и дипольную поляризацию. По характеру смещения заряженных частиц поляризация может быть упругой (безгистерезисной) и релаксационной (гистерезисной).
Упругая поляризация
К ней относятся следующие виды поляризации:
а) поляризация упругого электронного смещения;
б) поляризация ионного упругого смещения;
в) дипольно-упругая поляризация;
г) поляризация упругого ядерного смещения.
а)Поляризация упругого электронного смещения. Этот вид поляризации связан со смещением электронных оболочек атомов относительно ядер и имеет место во всех без исключения диэлектриках, за исключением абсолютного вакуума. Важно отметить, что у неполярных диэлектриков с ковалентной связью между атомами поляризация упругого электронного смещения является основным видом поляризации (полиэтилен, трансформаторное масло, парафин, водород) (рис. 27).
Дипольный момент, возникающий в атомах вследствие упругого электронного смещения, увеличивается при увеличении радиусов электронных оболочек атомов и количества электронов на них.
Поскольку общий эффект поляризации при упругой деформации электронных оболочек в электрическом поле невелик, диэлектрическая проницаемость неполярных диэлектриков мала.
б)Поляризация упругого ионного смещения. Этот вид поляризации вызван упругим смешением ионов из равновесных положений под действием внешнего электрического поля. Он характерен для ионных кристаллов (мрамор, поваренная соль, слюда, кварц и др.). Важно отметить, что в таких материалах, наряду с поляризацией упругого ионного смещения, присутствует и поляризация упругого электронного смещения. Типичная величина диэлектрической проницаемости составляет 5-150. Так у поваренной соли (NaCl) e=6, у корунда (Al2O3) e=0, у рутила (TiO2)e=110, у титаната кальция (CaTiO3) e=150. Из приведенных данных следует, что величина поляризации возрастает с увеличением радиусов ионов и с увеличением их зарядов.
в)Дипольно-упругая поляризация. Эта поляризация заключается в повороте на малый угол диполей и имеет место в полярных твердых диэлектриках, где диполи прочно связаны связями с другими молекулами. Время установления этой поляризации составляет 10-12 – 10-13с.
г)Поляризация упругого ядерного смещения. Этот вид поляризации наблюдается в газах со сложными молекулами. Время установления 10-12 – 10-13 с. Вклад этой поляризации в диэлектрическую проницаемость пренебрежимо мал.
Рис. 28. Зависимость диэлектрической проницаемости от температуры для неполярных диэлектриков. |
17аПри возрастании температуры объем диэлектрика возрастает, и диэлектрическая проницаемость, в соответствии с выражением (2.3), уменьшается (рис. 28). Особенно заметно уменьшение eпри плавлении и испарении диэлектриков, когда их объем существенно возрастает.
Рис. 30. Зависимость диэлектрической проницаемости от температуры для ионных кристаллов. |
В неполярных диэлектриках диэлектрическая проницаемость практически не зависит от частоты внешнего поля. Это связано с тем, что частота вращения электронов на орбитах велика ~1015 -1016 Гц.
17б Повышение температуры увеличивает межатомные расстояния, вследствие чего связь между отдельными ионами ослабляется, и облегчается взаимное смещение ионов под действием внешнего электрического поля. Поэтому при повышении температуры диэлектрическая проницаемость ионных кристаллов возрастает (рис. 30).
Время установления этого механизма поляризации сравнимо с периодом оптических колебаний ионов в кристаллической решетки и составляет 10-12 - 10-13 с. Поэтому до частот 1012- 1013 Гц диэлектрическая проницаемость веществ с ионной связью не зависит от частоты внешнего поля.
Рис.31. Зависимость диэлектрической проницаемости от температуры и от частоты электрического поля (f1>f2). |
17вПри низких температурах, когда подвижность молекул и радикалов, входящих в состав молекул, мала, поворот диполей на большие углы невозможен, и в материале наблюдается поляризация электронного упругого смещения и дипольно-упругая поляризация. В связи с этим диэлектрическая проницаемость полярных материалов при низких температурах мала (e=2-2,5). С возрастанием температуры подвижность диполей увеличивается, и облегчается их ориентация под действием внешнего поля. Следовательно, диэлектрическая проницаемость растет. Однако при дальнейшем росте температуры кинетическая энергия теплового движения диполей возрастает настолько, что броуновское движение диполей разрушает ориентацию, задаваемую внешним полем.
15. Виды поляризации релаксационного типа.
В ряде диэлектриков электроны ионы и дипольные молекулы могут скачком переходить из одного положения в другое. Эти переходы осуществляются частицами благодаря получению ими энергии при тепловых колебаниях. Электрическое поле снижает энергетический барьер для перехода по полю и повышает энергетический барьер для перехода против поля. В итоге, диэлектрик поляризуется, причем для поляризации требуется время. Иначе говоря, эти виды поляризации являются релаксационными.
а)Дипольно-релаксационная поляризация. Поляризация этого вида наблюдается во многих твердых и жидких диэлектриках с полярными группами: компаунды, бакелит, аминопласты и др. При дипольно-релаксационной поляризации происходит смещение полярных молекул или смещение радикалов, входящих в состав крупных молекул. Важно отметить, что дипольно-релаксационная поляризация сопровождается необратимыми потерями энергии при нахождении диэлектриков в переменном электрическом поле.
б)Ионно-релаксационная поляризация. Релаксационная поляризация также может быть связанной с перебросом из одного равновесного положения в другое слабосвязанных ионов или полярных групп. Типичными примерами являются переброс щелочных ионов (Na+,K+) из одного положения в другое в стеклах и переброс гидроксильных групп (ОН-) в целлюлозе. В этом случае говорят о ионно-релаксационной поляризации.
в)Электронно-релаксационная поляризация. В диэлектриках с кристаллической структурой, вместо части ионов в узлах кристаллической решетки могут находиться электроны и дырки (дополнительно ионизированные ионы). При приложении электрического поля эти дефекты кристаллической решетки также могут перебрасываться из одного положения в другое. В этом случае говорят об электронно-релаксационной поляризации
г)Резонансная поляризация. При совпадении собственной частоты колебания структурной единицы вещества (электрона, иона, радикала, входящего в состав молекулы, или полярной молекулы) с частотой внешнего поля наблюдается резонансная поляризация. В этом случае в узком интервале частот резко возрастает диэлектрическая проницаемость. Очевидно, что резонансные частоты для поляризации упругого электронного и упругого ионного смещения очень велики (1016- 1013Гц), поэтому резонансная поляризация наблюдается для дипольно-релаксационной поляризации.