Легкие бетоны на пористых заполнителях
Легкие бетоны на пористых заполнителях классифицируются по назначению, виду вяжущего и заполнителей, структуре. Низкая средняя плотность этих бетонов достигается за счет применения пористых заполнителей и межзернового пространства, имеющего поризованную или крупнопористую структуру. При плотной структуре межзерновой объем полностью заполнен мелким заполнителем и цементным камнем, при поризованной структуре межзерновой объем частично заполнен искусственно созданными порами и крупнопористая структура создается за счет частичного или полного отказа от применения мелкого заполнителя.
По назначению легкие бетоны на пористых заполнителях подразделяются на конструкционные, конструкционно-теплоизоляционные и теплоизоляционные.
Конструкционные бетоны имеют плотную структуру, среднюю плотность в сухом состоянии от 1400 до 2000 кг/м3, прочность при сжатии от 15 до 50 МПа. Их применяют в несущих бетонных и железобетонных конструкциях.
Конструкционно-теплоизоляционные бетоны могут иметь плотную, поризованную или крупнопористую структуру, частично заполненную мелким заполнителем. Средняя плотность их составляет от 500 до 1400 кг/м3, прочность при сжатии – от 3,5 до 10 МПа. Они должны обладать теплоизоляционными свойствами, иметь теплопроводность от 0,17 до 0,4 Вт/(м·оС). Их применяют в ограждающих конструкциях, которые воспринимают нагрузки и являются теплоизоляцией.
Теплоизоляционные бетоны имеют поризованную или крупнопористую структуру, среднюю плотность от 200 до 500 кг/м3, прочность при сжатии от 1,5 до 2,5 МПа, теплопроводность от 0,12 до 0,24 Вт/(м·оС). Их применяют для устройства теплоизоляции в ограждающих частях зданий и оборудования.
Для изготовления легких бетонов на пористых заполнителях используют те же материалы, что и для тяжелых бетонов, за исключением заполнителей.
Вяжущими служат портландцемент и его разновидности, глиноземистый цемент, известь, растворимые силикаты натрия и калия, гипсовые, шлакощелочные и полимерные вяжущие. В качестве заполнителей применяют сыпучие материалы из минерального сырья. Пористый песок должен иметь насыпную плотность не более 1200, щебень и гравий – не более 1000 кг/м3. Для конструкционных и конструкционно-теплоизоляционных бетонов может применяться тяжелый песок.
По происхождению пористые заполнители подразделяются на природные, из отходов промышленности и искусственные, специально изготавливаемые.
Природные заполнители изготавливаются из пористых изверженных и осадочных горных пород. Из изверженных пород применяют пемзы, вулканические шлаки, вулканические туфы и туфовую лаву.
Пемза – пористая горная порода, образовавшаяся в результате вспучивания магмы. Она встречается в виде залежей песка, щебня, крупных обломков. Насыпная плотность песка составляет 600–1100, щебня – 400–900 кг/м3. Литоидные плотные и прочные пемзы применяют для конструкционных легких бетонов, менее плотные – для конструкционно-теплоизоляционных и теплоизоляционных.
Вулканические шлаки образовались из жидкой магмы основного состава. Имеют крупнозернистую ноздреватую структуру. Насыпная плотность песка из них составляет 650--1300, щебня – от 400 до 850 кг/м3.
Вулканические туфы получились из уплотнившихся вулканических пеплов. Туфовая лава – это поризованная лава с наличием в своем составе пепла, песка, пемзы. Насыпная плотность песка из них – от 700 до 1000, щебня – 600--800 кг/м3.
Из осадочных пород применяют известняки-ракушечники и известняковые туфы, опоки, трепелы, диатомиты.
Известняки-ракушечники образовались из мелких сцементированных раковин. Известняковые туфы – из осадков углекислых вод. Из известняковых пород получают щебень с насыпной плотностью до 1000 кг/м3.
Опоки, трепелы, диатомиты – осадочные породы, представляющие собой остатки диатомовых водорослей. В их состав входит аморфный кремнезем, который может взаимодействовать со щелочами цемента и вызывать коррозию цементного камня. Это ограничивает их применение.
Искусственные заполнители изготавливаются из вторичных ресурсов промышленности. В качестве заполнителей для легкого бетона применяют горелые породы, металлургические и топливные шлаки, золы, золошлаковые смеси.
Горелые породы образовались в результате возгорания угля в терриконах-отвалах отходов добычи и обогащения угля с содержанием угля. Из них изготавливают щебень и песок с насыпной плотностью от 800 до 1000 кг/м3, который можно применять для легких бетонов с прочностью при сжатии 10–20 МПа.
Щебень из доменного шлака получают дроблением шлаков из старых отвалов или шлаков текущего выхода. Из пористых шлаков изготавливают щебень со средней плотностью до 800 кг/м3.
Из гранулированного шлака получают песок со средней плотностью от 600 до 1200 кг/м3.
Топливные шлаки образуются от сжигания углей. Их разделяют на шлаки из кускового и пылевидного топлива. Из кускового топлива получаются шлаки ноздреватого строения. Лучшими являются шлаки от сжигания антрацита, худшими – от сжигания бурых углей.
Насыпная плотность шлаков составляет до 1000 кг/м3. Их применяют в бетонах для неответственных конструкций. Наличие свободной извести в шлаках может привести к их разрушению, поэтому их следует выдерживать не менее одного года.
От сжигания пылевидного топлива образуется кусковой шлак ячеистой структуры, состоящий из спекшейся и оплавленной золы со средней плотностью зерен от 0,5 до 1,5 г/см3. Из них получают бетоны с пределом прочности от 5 до 50 МПа.
Зола тепловых электростанций представляет дисперсный материал с частицами пористой структуры. Насыпная плотность ее составляет 600--1300 кг/м3. Применяют золу в качестве мелкого заполнителя.
К искусственным пористым заполнителям относятся также керамзитовый гравий и песок, аглопоритовый щебень и песок, зольный гравий, шлаковая пемза, шунгизит, термолит, вспученные перлит и вермикулит.
Керамзитовый гравий и песок получают обжигом вспучивающихся легкоплавких глин. Песок можно изготавливать дроблением керамзитового гравия. Средняя плотность гравия составляет от 200 до 600, песка – от 500 до 1100 кг/м3. Их рекомендуют применять для стеновых панелей зданий, для стен монолитных домов.
Аглопоритовый щебень и песок получают спеканием глинистых пород, топливных зол, шлаков, отходов добычи угля, их дроблением и последующим рассевом на фракции. Щебень выпускают с насыпной плотностью от 400 до 900, песок – до 1000 кг/м3. Их рекомендуют применять для конструкционных легких бетонов.
Обжиговый зольный гравий получают обжигом золошлаковой смеси бурых углей. Насыпная плотность его составляет 300–800 кг/м3. Применяют зольный гравий для конструкционно-теплоизоляционных бетонов.
Безобжиговый зольный гравий получают грануляцией увлажненной золы и портландцемента, гипсоцементно-пуццоланового вяжущего и др. Насыпная плотность его составляет 700–950 кг/м3. Применяется для конструкционных и конструкционно-теплоизоляционных бетонов.
Шлаковая пемза (термозит) получается вспучиванием шлаковых расплавов. По бассейновому способу расплав сливают в емкость с перфорированным дном, через которое подается вода. Образующийся пар разрыхляет материал. Щебень из шлаковой пемзы имеет насыпную плотность от 700 до 900 кг/м3. Его применяют для конструкционных бетонов.
Шунгизитполучают вспучиванием графитсодержащей сланцевой породы. Применяют его для конструкционно-теплоизоляционных и теплоизоляционных бетонов.
Термолитполучают обжигом трепелов, диатомитов, опоки. Щебень и гравий из него имеют насыпную плотность 600–1200 кг/м3. Применяют их для конструкционных и конструкционно-теплоизоляционных бетонов.
Перлит вспученный получают обжигом силикатных водосодержащих пород перлита, обсидиана и др. При обжиге они увеличиваются в объеме в 10–12 раз. Перлитовый песок имеет насыпную плотность от 75 до 500, щебень от 200 до 500 кг/м3. Применяют их для конструкционно-теплоизоляционных и теплоизоляционных бетонов.
Вермикулит вспученный получают обжигом природных гидрослюд, содержащих 8–18 % связанной воды. При нагревании объем их увеличивается в 15–20 раз. Щебень и песок из вспученного вермикулита имеет среднюю плотность от 80 до 300 кг/м3. Применяют его для получения особолегких бетонов.
Технология получения легкого бетона на пористых заполнителях в основном не отличается от технологии изготовления тяжелого бетона. Дополнительно легкий заполнитель рекомендуется насыщать водой, дозирование его выполнять по объему. Время перемешивания по сравнению с тяжелобетонной смесью увеличивается.
Из легкого бетона и железобетона на пористых заполнителях изготавливают стеновые панели и блоки, плиты перекрытия и покрытия, камни для стен. Имеется опыт применения конструкционного керамзитобетона для пролетных строений мостов, в мелиоративном строительстве для устройства труб, лотков, акведуков, плит крепления каналов, туфобетона – в гидротехническом строительстве для возведения бетонных плотин.
Ячеистые бетоны
Ячеистые бетоны представляют собой материалы с искусственными, равномерно распределенными порами размером 1–2 мм. В их состав входит вяжущее, кремнеземистый компонент, порообразователь, регуляторы структурообразования. Пористая структура создается вспучиванием смеси и может регулироваться в процессе изготовления. В результате получаются бетоны с малой плотностью, низкой теплопроводностью, которые наиболее эффективны в ограждающих конструкциях.
Ячеистые бетоны подразделяются по назначению, по условиям твердения, по виду порообразователя, видам применяемых вяжущих и кремнеземистых компонентов.
По назначению ячеистые бетоны подразделяются на теплоизоляционные, конструкционно-теплоизоляционные, конструкционные и специальные. Специальные ячеистые бетоны могут быть жаростойкими, звукоизоляционными и др. По условиям твердения ячеистые бетоны подразделяются на автоклавные и неавтоклавные; по способу порообразования – на газобетоны и пенобетоны; по виду применяемых вяжущих – на основе известковых, цементных, шлаковых, зольных, смешанных; по виду кремнеземистого компонента могут быть на природных и вторичных продуктах промышленности.
Ячеистые бетоны самые востребованные строительные материалы. Они обладают многими положительными свойствами, которые обусловливают их широкое применение в строительстве и ряд особенностей, которые необходимо учитывать при их применении.
Они имеют небольшую среднюю плотность, которая составляет от 300 до 1200 кг/м3, что снижает нагрузки на фундамент и обеспечивает высокую сейсмоустойчивость зданий.
Теплопроводность ячеистого бетона в сухом состоянии составляет от 0,08 до 0,38 Вт/(м·оС). Она зависит от средней плотности. Большое влияние на теплопроводность оказывает влажность ячеистого бетона. На 1 % увеличения влажности по массе теплопроводность повышается на 4 %. Поэтому ячеистобетонные изделия следует защищать от увлажнения при перевозке, строительстве и эксплуатации. Равновесная влажность стеновых конструкций 3–5 % в отапливаемых зданиях с хорошей вентиляцией достигается через 1–2 года эксплуатации.
При плохой вентиляции и в неотапливаемых зданиях возможна конденсация влаги. В этом случае внутри следует устраивать пароизоляцию, а снаружи – вентилируемую облицовку.
Прочность ячеистого бетона при сжатии составляет от 0,5 до 15 МПа. На нее также влияет влажность. Так, при увеличении влажности силикатных бетонов до 10 % прочность в среднем снижается на 25 %.
Ячеистые бетоны имеют высокую огнестойкость. Их можно применять для огнезащиты стальных конструкций и повышения огнестойкости бетонных конструкций.
В связи с высокой пористостью и большим количеством сообщающихся пор ячеистые бетоны обладают высокой звукопоглощающей и звукоизолирующей способностью. Так, плиты «Силакпор» из ячеистого бетона со средней плотностью 300–350 кг/м3 при частоте звука 125–2000 Гц имеют коэффициент звукопоглощения 0,35–0,77. При средней плотности 400–500 кг/м3 и толщине 8 см. звукоизоляция ограждения составляет 32–34 дБ. Поэтому из ячеистого бетона устраивают перегородки в зданиях.
Морозостойкость ячеистых бетонов составляет 15–100 циклов и может быть выше. Однако при достижении критической влажности они могут разрушаться знакопеременными температурами. Это наблюдается при повышенной влажности внутри помещений, когда увлажнение миграционной и конденсационной влагой преобладает над высушиванием ячеистого бетона. В результате отслаивается наружное отделочное покрытие или разрушаются наружные поверхностные слои. Для защиты конструкций от увлажнения устраивают внутреннюю пароизоляцию.
Ячеистый бетон легко обрабатывается – режется, сверлится, пробивается гвоздями.
Согласно ГОСТ 25489-89 к ячеистым бетонам предъявляются требования по средней плотности, прочности при сжатии, морозостойкости, теплопроводности, паропроницаемости, сорбционной влажности, которые приведены в таблицах 4.26 и 4.27.
Таблица 4.26 – Физико-механические свойства ячеистых бетонов
Вид бетона | Марка бетона по средней плотности | Бетон автоклавный | Бетон неавтоклавный | ||
Класс по прочности на сжатие | Марка по морозостойкости | Класс по прочности на сжатие | Марка по морозостойкости | ||
Теплоизоляционный | D300 | B0,75 B0,50 | Не нормируется | – | – |
D350 | B 1 B0,75 | ||||
D400 | B1,5 B1 | B0,75 B0,5 | Не нормируется | ||
D500 | - | - | B1 B0,75 | ||
Конструкционно-теплоизоляционный | D500 | B2,5 B2 B1,5 B1 | От F15 до F35 | - | - |
D600 | B3,5 B2,5 B2 B1,5 | От F15 до F75 | B2 B1 | От F15 до 35 | |
D700 | B5 B3,5 B2,5 B2 | От F15 до F100 | B2,5 B2 B1,5 | От F15 до F50 | |
D800 | B7,5 B5 B3,5 B2,5 | B3,5 B2,5 B2 | От F15 до F75 | ||
D900 | B10 B7,5 B5 B3,5 | B5 B3,5 B2,5 |
Продолжение таблицы 4.26
Вид бетона | Марка бетона по средней плотности | Бетон автоклавный | Бетон неавтоклавный | ||
класс по прочности на сжатие | марка по морозостойкости | класс по прочности на сжатие | марка по морозостойкости | ||
Конструк- ционный | D1000 | B12,5 B10 B7,5 | От F15 до F50 | B7,5 B5 | От F15 до F50 |
D1100 | B15 B12,5 B10 | B10 B7,5 | |||
D1200 | B15 B12,5 | B10 B7,5 |
Таблица 4.27 – Физические свойства ячеистых бетонов
Вид бетона | Марка бетона по средней плотности | Теплопроводность, Вт/(м·оС), не более, в сухом состоянии бетона изготовленного | Коэффициент паропрони- цаемости, мг/(м·ч·Па), не менее, бетона изготовленного | Сорбционная влажность бетона, %, не более | |||||
при относительной влажности воздуха 75 % | при относительной влажности воздуха 97 % | ||||||||
бетона изготовленного | бетона изготовленного | ||||||||
на песке | на золе | на песке | на золе | на песке | на золе | на песке | на золе | ||
Теплоизоля- ционный | D300 D400 D500 | 0,08 0,10 0,12 | 0,08 0,09 0,10 | 0,26 0,23 0,20 | 0,23 0,20 0,18 | ||||
Конструкции онно-тепло- изоляционный | D500 D600 D700 D800 D900 | 0,12 0,14 0,18 0,21 0,24 | 0,10 0,13 0,15 0,18 0,20 | 0,20 0,17 0,15 0,14 0,12 | 0,18 0,16 0,14 0,12 0,11 | ||||
Конструкци- онный | D1000 D1100 D1200 | 0,29 0,34 0,38 | 0,23 0,26 0,29 | 0,011 0,010 0,010 | 0,010 0,09 0,08 |