Природные и попутные газы.
ПРИМЕНЕНИЕ ГАЗА
Газ может находиться в природе в залежах трех типов: газовых, газонефтяных и газоконденсатных.
В залежах первого типа — газовых — газ образует огромные естественные подземные скопления, не имеющие непосредственной связи с нефтяными месторождениями.
В залежах второго типа — газонефтяных — газ сопровождает нефть или нефть сопровождает газ. Газонефтяные залежи, как указано выше, бывают двух типов: нефтяные с газовой шапкой (в них основной объем занимает нефть) и газовые с нефтяной оторочкой (основной объем занимает газ). Каждая газонефтяная залежь характеризуется газовым фактором — количеством газа (в м3), приходящимся на 1000 кг нефти.
Газоконденсатные залежи характеризуются высоким давлением (более 3–107 Па) и высокими температурами (80–100°С и выше) в пласте. В этих условиях в газ переходят углеводороды С5 и выше, а при снижении давления происходит конденсация этих углеводородов — процесс обратной конденсации.
Газы всех рассмотренных залежей называются природными газами, в отличие от попутных нефтяных газов, растворенных в нефти и выделяющихся из нее при добыче.
Природные газы
Природные газы состоят в основном из метана. Наряду с метаном в них обычно содержатся этан, пропан, бутан, небольшое количество пентана и высших гомологов и незначительные количества неуглеводородных компонентов: углекислого газа, азота, сероводорода и инертных газов (аргона, гелия и др.).
Содержание метана в природном газе некоторых месторождений может достигать 99,3%, т. е. это — практически чистый метан, в других месторождениях оно значительно меньше — 76%. На долю гомологов метана в природном газе приходится 4–5%. Как правило, этана около 2–4%, пропана 0,1–3%, бутана обычно не более 1% и высших гомологов — доли процента.
Углекислый газ, который обычно присутствует во всех природных газах, является одним из главных продуктов превращения в природе органического исходного вещества углеводородов. Его содержание в природном газе ниже, чем можно было бы ожидать, исходя из механизма химических превращений органических остатков в природе, так как углекислый газ — активный компонент, он переходит в пластовую воду, образуя растворы бикарбонатов. Как правило, содержание углекислого газа не превышает 2,5%. Содержание азота, также обычно присутствующего в природных, связано либо с попаданием атмосферного воздуха, либо с реакциями распада белков живых организмов. Количество азота обычно выше в тех случаях, когда образование газового месторождения происходило в известняковых и гипсовых породах.
Особое место в составе некоторых природных газов занимает гелий. В природе гелий встречается часто (в воздухе, природном газе и др.), но в ограниченных количествах. Хотя содержание гелия в природном газе невелико (максимально до 1–1,2%), выделение его оказывается выгодным из-за большого дефицита этого газа, а также благодаря большому объему добычи природного газа.
Сероводород, как правило, отсутствует в газовых залежах. Исключение составляет, например, Усть-Вилюйская залежь, где содержание H2S достигает 2,5%, и некоторые другие. По-видимому, наличие сероводорода в газе связано с составом вмещающих пород. Замечено, что газ, находящийся в контакте с сульфатами (гипсом и др.) или сульфитами (пирит), содержит относительно больше сероводорода.
Природные газы, содержащие в основном метан и имеющие очень незначительное содержание гомологов С5 и выше, относят к сухим или бедным газам. К сухим относится подавляющее большинство газов, добываемых из газовых залежей. Газ газоконденсатных залежей отличается меньшим содержанием метана и повышенным содержанием его гомологов. Такие газы называются жирными или богатыми. В газах газоконденсатных залежей, помимо легких углеводородов, содержатся и высококипящие гомологи, которые при снижении давления выделяются в жидком виде (конденсат). В зависимости от глубины скважины и давления на забое в газообразном состоянии могут находиться углеводороды, кипящие до 300–400°С.
Газ газоконденсатных залежей характеризуется содержанием выпавшего конденсата (в см3 на 1 м3 газа).
Образование газоконденсатных залежей связано с тем, что при больших давлениях происходит явление обратного растворения — обратной конденсации нефти в сжатом газе. При давлениях около 75×106 Па нефть растворяется в сжатом этане и пропане, плотность которых при этом значительно превышает плотность нефти.
Состав конденсата зависит от режима эксплуатации скважины. Так, при поддержании постоянного пластового давления качество конденсата стабильно, но при уменьшении давления в пласте состав и количество конденсата изменяются.
Состав стабильных конденсатов некоторых месторождений хорошо изучен. Конец кипения их обычно не выше 300°С. По групповому составу: большую часть составляют метановые углеводороды, несколько меньше — нафтеновые и еще меньше — ароматические. Состав газов газоконденсатных месторождений после отделения конденсата близок к составу сухих газов. Плотность природного газа относительно воздуха (плотность воздуха принята за единицу) колеблется от 0,560 до 0,650. Теплота сгорания около 37700–54600 Дж/кг.
Попутные (нефтяные) газы
Попутным газом называется не весь газ данной залежи, а газ, растворенный в нефти и выделяющийся из нее при добыче.
Нефть и газ по выходе из скважины проходят через газосепараторы, в которых попутный газ отделяется от нестабильной нефти, направляемой на дальнейшую переработку.
Попутные газы являются ценным сырьем для промышленного нефтехимического синтеза. Качественно они не отличаются по составу от природных газов, однако количественное отличие весьма существенное. Содержание метана в них может не превышать 25–30%, зато значительно больше его гомологов — этана, пропана, бутана и высших углеводородов. Поэтому эти газы относят к жирным.
В связи с различием в количественном составе попутных и природных газов их физические свойства различны. Плотность (по воздуху) попутных газов выше, чем природных, — она достигает 1,0 и более; теплота сгорания их составляет 46000–50000 Дж/кг.
Применение газа
Одна из главных областей применения углеводородных газов — это использование их в качестве топлива. Высокая теплота сгорания, удобство и экономичность использования бесспорно ставят газ на одно из первых мест среди других видов энергетических ресурсов.
Другой важный вид использования попутного нефтяного газа — его отбензинивание, т. е. извлечение из него газового бензина на газоперерабатывающих заводах или установках. Газ подвергается при помощи мощных компрессоров сильному сжатию и охлаждению, при этом пары жидких углеводородов конденсируются, частично растворяя газообразные углеводороды (этан, пропан, бутан, изобутан). Образуется летучая жидкость — нестабильный газовый бензин, который легко отделяется от остальной неконденсирующейся массы газа в сепараторе. После фракционирования — отделения этана, пропана, части бутанов — получается стабильный газовый бензин, который используют в качестве добавки к товарным бензинам, повышающей их испаряемость.
Освобождающиеся при стабилизации газового бензина пропан, бутан, изобутан в виде сжиженных газов, нагнетаемых в баллоны, применяются в качестве горючего. Метан, этан, пропан, бутаны служат также сырьем для нефтехимической промышленности.
После отделения С2—С4 из попутных газов оставшийся отработанный газ близок по составу к сухому. Практически его можно рассматривать как чистый метан. Сухой и отработанный газы при сжигании в присутствии незначительных количеств воздуха в специальных установках образуют очень ценный промышленный продукт — газовую сажу:
CH4 + O2 à C + 2H2O
газовая
сажа
Она применяется главным образом в резиновой промышленности. Пропусканием метана с водяным паром над никелевым катализатором при температуре 850°С получают смесь водорода и окиси углерода — «синтез — газ»:
CH4 + H2O à CO + 3H2
[Ni] 850°С
При пропускании этой смеси над катализатором FeO при 450°С окись углерода превращается в двуокись и выделяется дополнительное количество водорода:
CO + H2O à CO2 + H2
[FeO] 450°С
Полученный при этом водород применяют для синтеза аммиака. При обработке хлором и бромом метана и других алканов получаются продукты замещения:
1. СН4 + Сl2 à СН3С1 +НСl — хлористый метил;
2. СН4 + 2С12 à СН2С12 + 2НС1 — хлористый метилен;
3. CH4 + 3Cl2 à CHCl3 + 3HCl — хлороформ;
4. CH4 + 4Cl2 à CCl4 + 4HCl — четыреххлористый углерод.
Метан служит также сырьем для получения синильной кислоты:
2СH4 + 2NH3 + 3O2 à 2HCN + 6H2O, а также для производства сероуглерода CS2, нитрометана CH3NO2, который используется как растворитель для лаков.
Этан применяется как сырье для производства этилена путем пиролиза. Этилен, в свою очередь, является исходным сырьем для получения окиси этилена, этилового спирта, полиэтилена, стирола и др.
Пропан используется для выработки ацетона, уксусной кислоты, формальдегида, бутан — для получения олефинов: этилена, пропилена, бутиленов, а также ацетилена и бутадиена (сырья для синтетического каучука). При окислении бутана образуется ацетальдегид, уксусная кислота, формальдегид, ацетон и др.
Все эти виды химической переработки газов более детально рассматриваются в курсах нефтехимии.