РАЗВИТИЕ МЕТАЛЛУРГИИ В XIV–XVI ВВ

Лекция 1

ДОНАУЧНЫЙ ПЕРИОД ДО ~IIIв

Как и любая наука, химия прошла путь от зарождения научных познаний до современного вида.

В древние времена, народы обладали некоторыми отрывочными, случайно добытыми сведениями о химических процессах, но они применяли данные сведения только к практическим целям, не пытаясь объяснить происходящие явления с научной точки зрения. В это время люди научились получать металлы, начали производить керамику, стекла, освоили дубление кож, крашение тканей, создание лекарственных средств, изготовление косметики. Ещё в 300 г. до нашей эры египтянин Зосима создал энциклопедию, которая состояла из 28 томов. В этих томах были собраны знания по взаимным превращениям веществ за последние 500-600 лет. Однако отсутствовало стремление к познанию сущности химических процессов путем планомерного эксперимента. Попытки теоретического осмысления проблемы происхождения свойств вещества привели к формированию в античной греческой философии, некоторые из которых держались очень долго и преобладали в течение всего средневекового периода. Так идеи Аристотеля эволюционировали в учения о превращение металлов, а именно превращение неблагородных металлов в благородные.

Греки унаследовали так называемую микенскую культуру (конец III и начало II тысячелетия до н. э.) с центром на северо-западе Малой Азии и на острове Кипр. По уровню ремесленной техники и химико-практических знаний микенская культура не уступала культуре других цивилизованных стран древнего мира. В поэмах Гомера «Илиада» и «Одиссей», в которых описаны события (мифы) времен Троянских войн (около 1000 г. до н. э.), приводятся многочисленные сведения, свидетельствующие о знакомстве древних греков с различными веществами, в частности с металлами, способами их добычи и обработки.

В странах Азии, почти не участвовавших в политических событиях, которые происходили на Западе, и экономически мало связанных с Западной Европой, развитие химических и химико-практических знаний в начале средних веков шло самостоятельным путем.

В течение первых веков нашей эры в Индии продолжали развиваться ремесленные производства. Рано появилась литература химико-технического содержания. Однако произведения древнеиндийских ремесленников-техников до нас не дошли. Лишь по сочинениям общего характера можно судить об уровне развития химических ремесел, а также металлургии и других областей техники в Древней Индии. Так, еще в конце IV в. до н. э. была написана книга «Артхашастра» посвященая политической, общественной, гражданской и военной организации государства. Также уделено внимание вопросам экономики и в ряде мест рассказывает о добыче и использовании природных минеральных богатств, о металлургическом производстве и ремесленной химической технике. Даются общие сведения о рудах золота, серебра, меди, свинца, олова и железа, а также о способах добычи и переработки этих руд и выплавки металлов. Кроме того, в книге приводятся данные и о других химико-технических приемах ремесленной техники, в частности об изготовлении алкогольных напитков.
В Индии, как и в Древнем Египте, были распространены учения о превращении металлов. Широкой популярностью пользовалась теория получения всех металлов от «родительской пары» — ртути и серы.

В первые десятилетия нашей эры в Индии было известно много разных химикатов. В практике химических ремесел применялись медный и железный купоросы, в медицине — препараты серы, для различных целей использовались природные соединения мышьяка — реальгар (As4S4) и аурипигмент (As2S3), уксус, для технических целей изготовлялись щелочи. С IV в. стал известен белый мышьяк (As2О3)
В эту же эпоху при крашении применялись квасцы, были известны прочные красители. С 550 г. в технике стали применяться цементированные металлы. Приблизительно около 600 г. уже была хорошо известна селитра. Об успехах в металлургии можно судить по железной колонне близ Дели (Делийская колонна) весом около 6,5 т. Колонна имеет в длину 7,3 м, диаметр ее у основания — 41,6 см, а у вершины — 29,5 см. Колонна была изготовлена в IV в. и благодаря малому содержанию примесей (~ 0,28%) сохранилась до наших дней.

Крупные успехи в развитии химической техники были сделаны в Китае в первые столетия нашей эры. Наряду с развитием техники обработки руд и выплавки металлов, с усовершенствованием процессов крашения и расширением ассортимента красок, в эту эпоху были сделаны и другие технические открытия.В 12 г. до н. э. в китайских летописях упоминается о бумаге. Ее получали в виде тонких пластинок из шелковой ваты — отхода производства шелка. В 105 г. чиновник Цай Лунь изобрел способ изготовления настоящей бумаги из древесной коры, конопли, тряпок, старых рыболовных сетей и т. д. Этот способ значительно позднее был освоен и в других странах: в Корее — около 600 г., в Японии — в 610 г., в 751 г. китайский способ производства бумаги был осуществлен в промышленном масштабе в Самарканде. Большие успехи китайских ремесленников нужно отметить и в области производства керамических изделий. Еще в эпоху Хань (206 г. до н. э.) были сделаны важные усовершенствования в рецептурах шихт для производства глиняной и фаянсовой посуды. Развитие техники производства привело к тому, что VII в. в Китае началось массовое промышленное изготовление фарфора, завоевавшего вскоре широкую известность как в азиатских государствах, так и в Европе. Секрет производства фарфора оставался неизвестным европейцам вплоть до начала XVIII в.

Также в Китае в эту эпоху был изобретен порох. В первые века нашей эры в Китае были хорошо известны составные части пороха — селитра и сера, применявшиеся в медицине. Кроме того, еще в VI в., а вероятно и ранее, в Китае существовали мануфактуры для производства «огненных составов», применявшихся для увеселительных целей во время праздников при императорском дворе. В 682 г. китайский алхимик Сунь Сымяо описал один из первых образцов пороха — весьма интенсивно горящую смесь из серы, селитры и древесного порошка. В 808 г. другой китайский алхимик — Цинь Сюй-цзы — сообщает о порохе, состоящем из серы, селитры и древесного угля. По-видимому, еще ранее (VIII в.) этот состав был хорошо известен китайским химикам и применялся при изготовлении фейерверков. В период династии Тан (618—907 гг.) порох стал применяться в качестве взрывчатого вещества в военном деле. Позднее (XII в.) в Китае было введено первое огнестрельное оружие — бамбуковая трубка, заряжавшаяся порохом и пулей.Секрет изготовления и применения китайского пороха довольно быстро проник к арабам, а через них — в Византию и, несомненно, послужил основой для изготовления «огненных составов» («греческий огонь»). В Европе порох появился лишь в XIII в.Наряду с развитием ремесленной химической техники в Китае в первые века нашей эры получили значительное развитие и алхимические идеи. Характер изложения в алхимических сочинениях Древнего Китая тот же, что и у александрийских, а в дальнейшем и у западноевропейских алхимиков.

Таким образом, в течение многовекового периода древнего мира человечество не только накопило многочисленные и различные химико-практические знания и научилось использовать разнообразные вещества и некоторые химические превращения для разных целей, но и создало первоначальные теории о природе веществ, о началах, или стихиях, их составляющих, выдвинуло важнейшие положения об атомном строении материи и теории о происхождении металлов и минералов и т. п.
Все эти достижения натурфилософии и практической химии древнего периода истории человечества невозможно рассматривать иначе как основу дальнейшего развития химии в средние века и в новое время.
Следует, однако, иметь в виду, что в развитии теоретических и химико-практических знаний в древний период четко определились три, почти обособленные друг от друга, направления деятельности:
1. Натурфилософские представления о веществе и началах, его составляющих. Достижения античных греческих философов — материалистов и, прежде всего, атомистов — оказали особенно большое влияние на дальнейшее развитие философии, естествознания и теоретической химии.

2. Химико-практические знания и ремесленные производства, в особенности металлургия и фармация. Развитию этого направления способствовали значительные успехи во всех крупных рабовладельческих государствах — Египте, государствах Междуречья, Индии, Китае и государствах Закавказья, а также в Древней Греции. Ремесленники и химики-практики древнего мира накопили в течение веков большой технический опыт. Практические знания и производственный опыт в области металлургии и фармации оказали особенно большое влияние на дальнейшее развитие химических знаний. Можно утверждать, что именно металлургия и фармация, зародившиеся на заре культурного развития человечества и получившие большое развитие в древности, и являются основой дальнейшего развития химии.

3. «Священное тайное искусство», т. е. поиски путей и возможностей изготовления искусственных благородных металлов, драгоценных камней, поиски чудодейственных универсальных лекарств, обеспечивающих долгую жизнь и даже бессмертие. Это направление, получившее широкое распространение в эпоху средневековья развивалось обособленно от ремесленно-химической практики.

Поиски путей трансмутации металлов при помощи философского камня и чудодейственных лекарств сочетались в «тайном искусстве» с черной магией, астрологией, искусством заклинаний, колдовством и т. д. Поэтому это направление стало уже в древности совершенно бесплодной ветвью химии. В дальнейшем развитии химических знаний наиболее прогрессивную роль играла практическая ремесленная химия. Мастера-металлурги, красильщики, врачи и фармацевты и другие химики-практики шаг за шагом продолжали совершенствовать старые способы химических производств, вводили новые способы обработки веществ и новые вещества в производства и, наконец, основывали новые области химической техники и новые производства. Однако очень немногие из них пытались теоретически осмыслить и объяснить осуществляемые ими химические превращения и процессы.
В то же время античная материалистическая натурфилософия, получившая блестящее развитие в древности, в первые века нашей эры подверглась жестоким преследованиям со стороны христианского духовенства и была запрещена. Многие произведения греческих философов были уничтожены.

АРАБСКАЯ АЛХИМИЯ

В период упадка александрийской и римской культуры на востоке Малой Азии (на современных территориях Ирана и Сирии) некоторое время существовали отдельные центры науки, возникшие под покровительством богатых правителей государств.

Первыми источниками химических знаний арабов, без сомнения, были сирийские, персидские и индийские философско-химические рукописи, частично представляющие собой переводы извлечений из греческих и александрийских авторов. В дальнейшем, в VIII и IX вв., арабы познакомились с оригинальными греческими сочинениями, главным образом сочинениями авторов Александрийской академии, и перевели их на арабский язык. К началу IX в. появились и произведения химического характера, написанные самостоятельно арабскими учеными.

Обширность территории арабской империи, единство литературного языка и религии способствовали распространению накопленных знаний и обмену научными и философскими произведениями между отдельными центрами науки, существовавшими в крупных городах империи. Следует указать также на международные связи ученых арабских центров науки, и прежде всего Багдада, особенно с Византией.

Арабы ввели для химии название «алхимия», прибавив к греко-египетскому названию «химия» арабскую приставку «ал». Под алхимией понимался комплекс химических знаний, накопленных арабами и их предшественниками. Это название прочно вошло в европейскую литературу и удерживалось во всех европейских языках в течение всей эпохи средневековья и первых столетий нового времени. Оно перестало употребляться лишь к началу XVIII в., когда ученые вернулись к старому греко-египетскому названию «химия». Начиная с XIII в. под алхимией стали понимать искусство превращения неблагородных металлов в золото при помощи философского камня. В период расцвета арабской культуры и науки в крупных городах империи появились весьма видные ученые, в большинстве ученые-энциклопедисты. Многие из них были выдающимися врачами и алхимиками.

Виднейшим арабским алхимиком считается Джабир ибн Гайян. Приводимые в старой алхимической литературе сведения о личности и деятельности этого ученого носят легендарный характер. Операции, которые использовал Джабируиспользуют и по сей день: получение и очистка различных металлов, получение и перегонка растительных масел, кристаллизация, сублимация различных веществ, перегонка ртути, применение щелочей и мыла, операции с возгонкой. Джабиру приписываются также высказывания о важности для алхимиков практической деятельности и производства опытов.

К более позднему времени относится деятельность другого видного арабского алхимика— ар-Рази (IX в). Полное имя Рази — Абу Бакр Мухаммед ибн Закариййа ар-Рази.

Ар-Рази впервые в истории химии предпринял попытку классифицировать все известные ему вещества. Он разделяет все вещества на три больших класса:

1) землистые (минеральные),

2) растительные

3) животные.

Минеральные вещества он делит на шесть групп:

1) «духи» (спирты, летучие вещества), к этой группе он относит ртуть, нашатырь, аурипигмент или реальгар (вероятно, и то и другое) и серу;

2) «тела» (т. е. металлы), всего их семь: золото, серебро, медь, железо, олово, свинец, и «харасин» (вероятно, цинк);

3) «камни», всего их тринадцать: марказит, марганцовая руда, бурый железняк, галмей, ляпис-лазурь, малахит, бирюза, красный железняк, белый мышьяк, сернистый свинец и сернистая сурьма, слюда, гипс и стекло;

4) купоросы, их шесть видов: черный купорос, квасцы, белый купорос (вероятно, цинковый), зеленый купорос, желтый (Fe2 (S04)3, красный (вероятно, также сульфат железа);

5) «бораки» (бура?), их также шесть видов: хлебная бура (вероятно, поташ), натрон (сода) бура ювелиров, «тинкар» (род мыла, применявшегося при пайке металлов), зараванская бура, арабская бура;

6) «соли», 11 видов: хорошая соль (обычная), горькая (возможно, мирабилит или английская), каменная, белая, нефтяная, индийская, китайская соль, поташ, соль мочи, известь и соль золы.

Растительные вещества Ар-Рази не перечисляет, упоминая лишь о том, что они редко употребляются. Из животных веществ он выделяет 10: волосы, кости черепа, мозг, желчь, кровь, молоко, моча, яйца, раковины («мать перлов») и рог.

Кроме этих основных групп веществ ар-Рази выделяет группу так называемых производных веществ. К их числу он относит «тела» и «нетела» (т. е. металлы и неметаллы). К числу производных тел — металлов относятся сплавы: латунь, бронза, сплав семи металлов, сплав меди со свинцом (свинцовая бронза) и «муфраг» (сплав свинца с оловом). К числу неметаллов относятся: ярь-медянка, крокус, свинцовый глет, сурик, свинцовые белила, окись меди и др.

Из этого списка веществ и материалов, а также из перечня аппаратов и приборов, приведенного в сочинениях ар-Рази, следует, что его лаборатория была хорошо оснащена. В ней имелись, в частности, кубки, колбы, тазы, стеклянные блюдца для кристаллизации, кувшины, кастрюли, горелки, нефтяные лампы, жаровни и печи (атанор), печи для плавки, напильники, шпатели, ковши, ножницы, молотки, щипцы, песчаные и водяные бани, фильтры из тканей и шерсти, алембики, алудели, воронки, кукурбиты, ступки с пестиками, сита металлические, волосяные и шелковые и другие приборы и принадлежности.

Ар-Рази описал различные химические операции, в частности плавление тел, декантацию, фильтрование, дигерирование (настаивание при повышенной температуре), дистилляцию, сублимацию, амальгамацию, растворение, коагуляцию (сгущение) и др.

Сочинения ар-Рази вскоре проникли в арабскую Испанию и в дальнейшем были переведены на латинский язык и особо почитались западноевропейскими алхимиками.

АЛХИМИЯ В ЗАПАДНОЙ ЕВРОПЕ

После падения Западной Римской империи в Европе наступил застой в развитии наук и ремесла.

В начале XII в. в Испании были переведены с арабского на латинский язык комментарии к сочинениям Аристотеля профессора Кордовской высшей школы Ибн-Рошда (Аверроэс), а несколько позднее, во второй половине XII в., появились и переводы сочинений самого Аристотеля. Эти переводы получили быстрое распространение в Европе, их стали изучать в монастырских школах. Однако отцы церкви — преподаватели школ — делали все возможное, чтобы приспособить учение Аристотеля к догматам церкви, искажая мысли и положения великого ученого древности. Толкование Аристотеля вскоре сделалось основой так называемой схоластической (школьной) философии.

Между тем на рубеже XI–XII вв. в Европе происходили значительные экономические изменения. В связи с увеличением населения, а также обеднением крестьянства начался рост городов, развитие ремесел, особенно металлургических, обработки металлов и ткачества. В городах возникали объединения ремесленников по специальностям — цехи, организовывались союзы купцов, так называемые гильдии, гражданские коммуны, которые иногда именовались гражданскими университетами (universitas civium; universitas — «совокупность», «союз»). Старейший университет в Европе — Болонский — был основан в 1119 г. Затем в 1189 г. возник университет (медицинский) в Монпелье, а в 1200 г. был основан университет в Париже. Вслед за ними возникли университеты и в других крупных городах Европы.

Одним из первых крупных алхимиков Западной Европы обычно считают графа Альбрехта фон Больштедта, более известного под именем Альберта Великого (1193–1280). Знаменитым алхимиком этой эпохи был англичанин Роджер Бэкон (1214–1294). Бэкон был одним из первых европейцев, которые придавали важное значение опыту в исследованиях. Согласно Бэкону, существуют два метода исследования — умозрительный и опытный. Умозрительный путь никогда не достаточен, хотя при помощи его и можно решить вопрос, но такое решение не дает уверенности в абсолютной правильности выводов. Только опытным путем можно убедиться в справедливости умозаключений.Считал, что алхимия может принести большую пользу медицине, предвосхитив в некоторой степени идеи Парацельса.

В ту же эпоху широкой известностью пользовался алхимик и врач Арнольд Вилланованский (около 1235–1313). Арнольд не отделял алхимию от медицины. Из его алхимических творений наиболее известны «Розарий философов», «О ядах» и «О противоядиях».

ЯТРОХИМИЯ

С XVв становиться заметные попытки освобождения от алхимических взглядов. Развитие науки происходит в Университетах, а с началом эпохи книгопечатания в Европе, научные познания находят быстрое распространение.

Географические открытия также явились катализатором развития химической науки. Хотя алхимические идеи еще не были вытеснены, у химии появилась новая задача, которая обуславливалась более тесным контактом с медициной и сводилась к открытию и иследованию лекарств.

Родоначальником этой эпохи в развитии химии был Парацельс. Полное имя Парацельса таково: Филипп Ауреол Теофраст Бомбаст фон Гогенгейм. Имя «Парацельс» (означающее в переводе «сверхблагородный», а точнее: «превосходящий Цельса» — знаменитого врача популяризатора и энциклопедиста, жившего около начала новой эры, он сам присвоил себе.

Одним из видных иатрохимиков второй половины XVI и начала XVII в. был Андреас Либавий (1550—1616). Из сочинений Либавия особенно заметный след в истории химии оставил обширный курс химии, озаглавленный «Алхимия» (1597г.). Курс этот хорошо отражает уровень химико-практических знаний эпохи иатрохимии. Либавий, в сущности, не касался в своем курсе теоретических вопросов химии, а изложил лишь сведения, важные для химика, работающего в лаборатории, и практикующего врача.
Курс Либавия делится на два больших раздела. В первом содержатся сведения о химической посуде и аппаратуре, нагревательных приборах, а также излагаются данные о важнейших химических операциях. Второй раздел курса Либавия озаглавлен «Химия» и посвящен описанию различных веществ и способов их получения.

Весьма важными для дальнейшего развития химии оказались и исследования Ван-Гельмонта, посвященные газам. Эти исследования положили начало развитию химии газов, или, как она стала называться впоследствии, пневматической химии

Виднейшими последователями Ван-Гельмонта, в известном смысле завершившими переломный иатрохимический период развития химии, были Сильвий и Тахений.

Однако интересы ятрохимии, ограниченные главным образом приложением химии к медицине, не содействовали широкому развитию химии и в особенности возникновению новых теоретических идей и правильной оценке новых фактов. Особенно отрицательное влияние на развитие химии оказал полный отрыв интересов ятрохимиков от проблем технической химии и от химических производств.

Но в общем, в этот период развития химия перешла из рук шарлатанов-дилетантов к ученым, обладающим большим запасом научных сведений. Можно сказать, что этот период является важной подготовительной эпохой, в течение которого химия приобрела значительный запас научного материала, давшая ей возможность с середины XVII века стать рядом в качестве молодой науки с физикой.

ПЕРИОД СТАНОВЛЕНИЯ

К середине XVII в. мануфактурное производство получило широкое развитие во всех главных странах Европы. Зародилось машинное производство, были изобретены и вводились в практику простейшие механические устройства и приспособления, облегчавшие, а также и вытеснявшие ручной труд.

Период становления химии как науки произошла её полная рационализация. Химия освободилась от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств.Основоположником химической науки можно назвать британского учёного Роберта Бойля, который являлся одним из крупнейших химиков, физиков и философов своего времени. В качестве основных научных достижений Бойля в химии можно отметить основание им аналитической химии (качественный анализ), исследования свойств кислот, введение в химическую практику индикаторов, изучение плотностей жидкостей с помощью изобретённого им ареометра. Нельзя не упомянуть и открытый Бойлем закон, носящий его имя (называемый также законом Бойля-Мариотта).

Главное значение работы Бойля заключается в следующем:

1. Формулировка новой цели химии – изучения состава веществ и зависимости свойств вещества от его состава.

2. Предложение программы поиска и изучения реальных химических элементов;

3. Введение в химию индуктивного метода;

Оставыались также не решенные вопросы. Так, в сочинениях химиков второй половины XVII в. большое внимание отводилось толкованиям явлений горения и кальцинации (превращение в «известь») металлов. Отсутствие единой точки зрения и неубедительность доводов ученых, породило теорию флогистона, основоположником которой являлся Г. Шталь. Даная теория господствовала на протяжениен века и была создана для описания процессов обжига металлов.

Суть теории флогистона можно изложить в следующих основных положениях:

1. Существует материальная субстанция, содержащаяся во всех горючих телах – флогистон (от греческого φλογιστοζ – горючий).

2. Горение представляет собой разложение тела с выделением флогистона, который необратимо рассеивается в воздухе. Вихреобразные движения флогистона, выделяющегося из горящего тела, и представляют собой видимый огонь. Извлекать флогистон из воздуха способны лишь растения.

3. Флогистон всегда находится в сочетании с другими веществами и не может быть выделен в чистом виде; наиболее богаты флогистоном вещества, сгорающие без остатка.

4. Флогистон обладает отрицательной массой.

Теория Шталя, подобно всем предшествующим, также исходила из представлений, будто свойства вещества определяются наличием в них особого носителя этих свойств. Положение флогистонной теории об отрицательной массе флогистона (значительно более позднее и признававшееся не всеми сторонниками теории) было призвано объяснить тот факт, что масса окалины (или всех продуктов горения, включая газообразные) больше массы обожжённого металла.

Процесс обжига металла в рамках теории флогистона можно отобразить следующим подобием химического уравнения:

Металл = Окалина + Флогистон

Для получения металла из окалины (или из руды), согласно теории, можно использовать любое тело, богатое флогистоном (т.е. сгорающее без остатка) – древесный или каменный уголь, жир, растительное масло и т.п.:

Окалина + Тело, богатое флогистоном = Металл

Необходимо подчеркнуть, что эксперимент может только подтвердить справедливость этого предположения; это являлось хорошим аргументом в пользу теории Шталя. Флогистонная теория со временем была распространена на любые процессы горения. Тождество флогистона во всех горючих телах было обосновано Шталем экспериментально: уголь одинаково восстанавливает и серную кислоту в серу, и земли в металлы. Дыхание и ржавление железа, по мнению последователей Шталя, представляют собой тот же процесс разложения содержащих флогистон тел, но протекающий медленнее, чем горение.

Теория флогистона позволила, в частности, дать приемлемое объяснение процессам выплавки металлов из руды, состоящее в следующем. Руда, содержание флогистона в которой мало, нагревается с древесным углем, который очень богат флогистоном; флогистон при этом переходит из угля в руду, и образуются богатый флогистоном металл и бедная флогистоном зола.

Следует отметить, что в исторической литературе имеются серьёзные разногласия в оценке роли теории флогистона – от резко негативной до положительной.

Флогистонная теория – первая истинно научная теория химии – послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах. Следует отметить, что положение об отрицательной массе флогистона фактически сделано на основании закона сохранения массы, который был открыт значительно позднее. Это предположение само по себе способствовало дальнейшей активизации количественных исследований. Ещё одним результатом создания флогистонной теории явилось активное изучение химиками газов вообще и газообразных продуктов горения в частности.

Признание флогистона в качестве основного агента химических процессов, сопровождавшихся выделением тепла и света и другими явлениями, привело к оживлению старых представлений об особой роли «невесомых флюидов» в химических процессах. В частности, возродилось старинное учение о теплоте как некоторой «материальной» и в то же время невесомой жидкости, способной «переливаться» из одного тела в другое. Правда, еще в начале XVIII в. некоторые физики (Декарт, Гук и др.) подвергали сомнениям такого рода представления и выступали в пользу механистической теории тепла, хотя и в несколько наивной форме. Еще в1669 г. английский химик Джон Мейоу пытался доказать, что в воздухе содержится особый газ, поддерживающий горение и необходимый для дыхания; обосновывал он это предположение знаменитыми опытами с горящей свечой под колоколом.Однако к середине XVIII в. эти прогрессивные точки зрения оказались полностью отброшенными и были забыты. И торлько в конце XVIII в Карл Вильгельм Шееле и Джозеф Пристли независимо друг от друга открыли кислород. Окончательно разрушили теорию флогистона работы французкого химика Антуана Лорана Лавуазье и русского ученого Михаила Васильевича Ломоносова (основоположника физической химии).

Лекция 2

ОСНОВНЫЕ ЗАКОНЫ ХИМИИ

Закон сохранения массы

Закон сохранения массы можно сформулировать так:

«масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции».

Открытие данного закона приписывают М.В. Ломоносову (1748 г. и подтвержден экспериментально им самим в 1756 г.), хотя он сам не приписывал себе авторство. В зарубежной литературе открытие данного закона приписывают А. Лавуазье (1789 г.)

Данный закон верен с большой точностью для всех химических реакций, так как дефект массы несоизмеримо мал

После открытия специальной теории относительности, масса приобрела новые свойства:

1. Масса объекта зависит от его внутренней энергии. При поглощении энергии масса растет, при ее выделении масса уменьшается. Особенно ощутимо изменение массы при ядерных реакциях. При химических реакциях изменение массы пренебрежительно мало – при тепловом эффекте реакции 100 кДж/моль изменение массы составит ~10-9 г/моль, при нагревании железного утюга на 200° его масса возрастает на величину Δm/m~10-12

2. Масса не является аддитивной величиной, т.е масса системы не равна сумме масс её составляющих, например аннигиляция электрона и позитрона, частиц имеющую массу покоя на фотоны, не имеющих массу покоя, масса дейтерия не равна сумме масс протона и нейтрона и т.д.

Из вышесказанного следует, что закон сохранения массы тесно связан с законом сохранения энергии, что объясняется специальной теорией относительности и выполняется с таким же ограничением — надо учитывать обмен системы энергией с внешней средой.

Закон эквивалентов

Открыт в результате химических опытов И.Рихтера в 1791-1798 гг

Первоначальная формулировка закона эквивалентов (термин "эквивалент" ввёл в 1767 г. Г. Кавендиш) была следующей: "Если одно и то же количество какой-либо кислоты нейтрализуется различными количествами двух оснований, то эти количества эквивалентны и нейтрализуются одинаковым количеством любой другой кислоты".

Проще говоря, химические соединения взаимодействуют не в произвольных, а в строго определённых количественных соотношения.

Однако, данный закон открыл вопрос о постоянстве состава вещества. Виднейший ученный того времени Клод Луи Бертолле предложил в 1803 г. теорию химического сродства, по средствам сил притяжения и зависящего от плотности вещества и его количества. Он отстаивал предположение о том, что элементный состав вещества может изменяться в некоторых пределах в зависимости от условий, в которых оно было получено. Постоянные отношения в соединениях, по Бертолле, могут иметь место лишь в случаях, когда при образовании таких соединений произошло значительное изменение плотности и, следовательно, сил сцепления. Так, газообразные водород и кислород соединяются в воду в постоянных отношениях, потому что вода — жидкость, обладающая значительно большей плотностью, чем исходные газы. Но если изменение плотности и сцепления при образовании соединения незначительно, образуются вещества переменного состава в широких границах отношений составных частей. Границами для образования таких соединений служат состояния взаимного насыщения составных частей. Учение Бертолле, отвергающее постоянство пропорций в химических соединениях было встречено с явным недоверием несмотря на высокий научный авторитет Бертолле. Однако большинство химиков-аналитиков, в том числе таких, как Клапрот и Вокелен, не решились открыто выступить с опровержением утверждений Бертолле. Лишь один, малоизвестный в то время мадридский химик Пруст не постеснялся выступить с критикой взглядов Бертолле и указать на его экспериментальные ошибки и неправильные выводы. После появления первой критической статьи Пруста (1801 г.) Бертолле счел нужным ответить последнему, отстаивая свои положения. Завязалась интересная и исторически весьма важная полемика, продолжавшаяся несколько лет (до 1808 г.) И хотя доводы Пруста, по-видимому, не вполне убедили Бертолле, который еще в 1809 г. признавал возможность существования соединений переменного состава, все химики встали на точку зрения Пруста, которому принадлежит, таким образом, заслуга экспериментального установления закона постоянства состава химических соединений.

Закон постоянства состава

Закон постоянства состава (постоянных отношений) открыл французкий ученый Жозеф Луи Пруст. И который стал одним из главных химических законов.

Закон постоянства состава— любое определенное химически чистое соединение, независимо от способа его получения, состоит из одних и тех же химических элементов, причём отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами.

Закон постоянства состава и стехиометричность соединений долгое время считались незыблемыми. Однако в начале XX в. И. С. Курнаков на основании своих исследований пришел к выводу о существовании нестехиометрических соединений, т. е. характеризующихся переменным составом. Еще  Д. И. Менделеев (1886 г.) на основе собственных наблюдений и накопившихся к тому времени многочисленных экспериментальных данных пришел к выводу, о наличие веществ с непостоянным составом и что эти соединения являются настоящими химическими соединениями, лишь находящимися в состоянии диссоциации. Н. С. Курнаков отмечал, что было бы ошибкой считать соединения переменного состава чем-то редким и исключительным. Соединения постоянного состава Н. С. Курнаков назвал дальтонидами в честь Д. Дальтона, широко применявшего атомно-молекулярную теорию к химическим явлениям. Нестехиометрические соединения были названы в честь К. Бертолле бертоллидами. По его представлениям, бертоллиды — это своеобразные химические соединения переменного состава, формой существования которых является не молекула, а фаза, то есть химически связанный огромный агрегат атомов. Классическая теория валентности не применима для соединений бертоллидного типа, поскольку они характеризуются переменной валентностью, изменяющейся непрерывно, а не дискретно, Перечисление синтезированных и известных соединений говорит о том, что большинство из них относятся к бертоллидному типу. В принципе любое твердое соединение, кроме веществ с молекулярной решеткой, является соединением переменного состава.

Бертоллиды, по Курнакову, представляют собой твердые растворы неустойчивых в свободном состоянии химических соединений постоянного состава. Охарактеризовав таким образом соединения постоянного и переменного состава, Курнаков пришел к выводу, что и Пруст, и Бертолле были правы в своих утверждениях.

Однако простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II) записывают в виде FeO (вместо более точной формулы Fe1-xO).

Закон кратных отношений.

Открыт Д. Дальтоном (также открыл закон парциальных давлений (закон Дальтона), закон растворимости газов в жидкостях (закон Генри-Дальтона))

Закон кратных отношений — один из стехиометрических законов химии: если два элемента образуют друг с другом более одного соединения, то массы одного из элементов, приходящиеся на одну и ту же массу другого элемента, относятся как целые числа, обычно небольшие.

Состав оксидов хлора(в процентах по массе) выражается следующими числами:

  Cl2O ClO2l2O4) Cl2O6 Cl2O7
Cl 81,61 52,59 42,51 38,8
O 18,39 47,41 57,49 61,2
Соотношение Cl/O 0,225 0,901 1,35 1,57

Основываясь на законе постоянства состава, Дальтон разработал атомно-молекулярную теорию

Понятие элемента появилось благодаря Лавуазье, который выделил более 30 химических элементов. Дальтон смог объяснить, что они отличаются друг от друга, так как различаются составляющие их атомы. Существует столько же разных атомов, сколько и разных элементов, и каждый имеет свою атомную массу. Сочетания атомов, образующие разные соединения, — понятие молек

Наши рекомендации