Адсорбционный участок (центр связывания) по своему строению соответствует структуре реагирующих соединений, и поэтому к нему легко присоединяются молекулы субстрата.

Каталитический участок активного центра непосредственно осуще­ствляет ферментативную реакцию.

Большинство ферментов содержат в своей молекуле только один активный центр. У некоторых ферментов может иметься несколько ак­тивных центров.

МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ

В любом катализе, осуществляемом ферментами, можно обнару­жить три обязательные стадии.

На первой стадии молекулы реагирующих веществ (субстрата) при­соединяются к адсорбционному участку активного центра фермента за счет слабых связей. Образуется фермент-субстратный комплекс, кото­рый может легко распадаться снова на фермент и субстрат, т. е. первая стадия ферментативного катализа полностью обратима. На этой стадии с помощью активного центра возникает благоприятная ориентация реа­гирующих молекул, что способствует их дальнейшему взаимодейст­вию.

На второй стадии с участием каталитического участка активного центра и молекул субстрата происходят различные реакции, характери­зующиеся низкой величиной энергии активации и поэтому протекаю­щие с большой скоростью. В результате этих реакций в конечном счете образуется либо продукт реакции, либо почти готовый продукт.

На третьей стадии происходит отделение продукта реакции от ак­тивного центра с образованием свободного фермента, способного при­соединять к себе новые молекулы субстрата. Если на второй стадии был получен почти готовый продукт, то он предварительно превраща­ется в продукт, который затем отделяется от фермента.

Схематично стадии ферментативного катализа можно представить следующим образом:

I стадия II стадия Ш стадия

Е + S à [ E – S ] à E + P

фермент Химически Продукт

преобразованный

фермент-субстратный комплекс,

где (S– субстрат реакции, P - продукт или почти готовый продукт реакции).

В клетках ферменты, катализирующие многостадийные химические процессы, часто объединяются в комплексы, называемые мультиферментными системами. Эти комплексы структурно связаны с органои­дами клеток или же встроены в биомембраны. Объединение отдельных ферментов в единый комплекс позволяет одновременно ускорять все последовательные стадии превращения какого-либо субстрата.

В некоторых случаях в катализе наряду с белком-ферментом еще участвует низкомолекулярное (небелковое) соединение, называемое коферментом. Большинство коферментов в своем составе содержат витамины. Строение и механизм действия коферментов будут рас­смотрены при описании химических реакций, в которых они принима­ют участие.

СПЕЦИФИЧНОСТЬ ФЕРМЕНТОВ

Различают два вида специфичности ферментов: специфичность дей­ствия и субстратную специфичность.

Глюкоза + Фосфорная кислота (1) Глюкозо-1-фосфат (2) Фруктозо-6-фосфат (3)  

Адсорбционный участок (центр связывания) по своему строению соответствует структуре реагирующих соединений, и поэтому к нему легко присоединяются молекулы субстрата. - student2.ru Специфичность действия - это способность фермента катализиро­вать только строго определенный тип химической реакции. Если суб­страт может вступать в разные реакции, то для каждой реакции нужен свой фермент. Например, широко распространенный в клетках глюкозо-6-фосфат (производное глюкозы) подвергается различным превра­щениям:

Глюкозо – 6 - фосфат

Отщепление от этого субстрата фосфорной кислоты происходит под действием фермента фосфатазы (1).При этом фосфатаза катализирует только реакцию отщепления фосфорной кислоты, никакие другие пре­вращения глюкозо-6-фосфата этот фермент не ускоряет. Другое воз­можное превращение глюкозо-6-фосфата осуществляется с участием фермента мутазы (2).В этом случае глюкозо-6-фосфат переходит в глюкозо-1-фосфат. Еще один фермент – изомераза (3)- вызывает превраще­ние глюкозо-6-фосфата во фруктозо-6-фосфат.

Таким образом, каждый фермент катализирует только одну из всех возможных реакций, в которые может вступать субстрат. Специфич­ность действия определяется в основном особенностями строения ката­литического участка активного центра фермента.

Субстратная специфичность- способность фермента действовать только на определенные субстраты.

Различают две разновидности субстратной специфичности: абсо­лютнуюи относительную.

Фермент, обладающий абсолютной субстратной специфичностью, катализирует превращения только одного субстрата. На другие вещест­ва, даже очень близкие по строению к этому субстрату, фермент не действует. Примером фермента с абсолютной субстратной специфич­ностью является аргиназа- фермент, отщепляющий от аминокислоты аргининамочевину. Аргинин - единственный субстрат аргиназы.

Относительная (групповая) субстратная специфичность - это спо­собность фермента катализировать превращения нескольких похожих по строению веществ. Обычно эти вещества обладают одним и тем же типом химической связи и одинаковой структурой одной из химиче­ских группировок, соединенных этой связью. Например, фермент пеп­синрасщепляет пептидные связи в белках любого строения.

Субстратная специфичность обусловлена главным образом структу­рой адсорбционного участка активного центра фермента.

ИЗОФЕРМЕНТЫ

Изоферменты (изоэнзимы) - различные молекулярные формы фермента, катализирующие одну и ту же химическую реакцию. Обыч­но между изоферментами одного и того же фермента имеются различия

Впервичной структуре, т. е. у изоферментов может быть различный на­бор и последовательность аминокислот в пол и пептидной цепи. Но эти различия, как правило, не затрагивают структуру каталитического уча­стка активного центра, и поэтому изоферменты одного и того же фер­мента ускоряют одну и ту же химическую реакцию. Различия в амино­кислотном составе молекул изоферментов вне каталитического участка приводят к изменениям их физико-химических свойств и субстратной специфичности.

Наши рекомендации