Химические свойства. Применение целлюлозы
1) Целлюлоза не дает реакции «серебряного зеркала» (нет альдегидной группы). Это позволяет рассматривать каждое звено С6Н10О5 как остаток глюкозы, содержащий три гидроксильные группы. Последние в формуле целлюлозы часто выделяют:
За счет гидроксильных групп целлюлоза может образовывать простые и сложные эфиры.
При взаимодействии целлюлозы с концентрированной азотной кислотой в присутствии концентрированной серной кислоты в качестве водоотнимающего средства образуется сложный эфир — тринитрат целлюлозы:
Это — взрывчатое вещество, применяемое для изготовления порохов.
Таким образом, при обычной температуре целлюлоза взаимодействует лишь с концентрированными кислотами.
2) Подобно крахмалу, при нагревании с разбавленными кислотами целлюлоза подвергается гидролизу с образованием глюкозы:
nСбН12O6®(С6Н1006)n+nН2O
Применение целлюлозы Гидролиз целлюлозы, иначе называемый осахариванием, — очень важное свойство целлюлозы, он позволяет получить из древесных опилок и стружек целлюлозу, а сбраживанием последней — этиловый спирт. Этиловый спирт, полученный из древесины, называется гидролизным. Сырая глюкоза, полученная из древесины, может служить кормом для скота.. Целлюлоза в виде хлопка, льна или пеньки идет на изготовление тканей — хлопчатобумажных и льняных. Большие количества ее расходуются на производство бумаги. Дешевые сорта бумаги изготовляют из древесины хвойных пород, лучшие сорта — из льняной и хлопчатобумажной макулатуры. Подвергая целлюлозу химической переработке, получают несколько видов искусственного шелка, пластмассы, кинопленку, бездымный порох, лаки и многое другое.
Биологическая рольцеллюлозы, использование ее продуктов (клетчатки).
1. Является основным структурным компонентом оболочки растительной клетки, полимер глюкозы.
2. Основное физиологическое действие – способность связывать воду. В толстом кишечнике метаболизируется бактериями. Переваривание клетчатки представляет собой единственный процесс в организме, происходящий без доступа кислорода (в анаэробных условиях). В результате переваривания образуются летучие жирные кислоты, большая часть которых всасывается в кровь и может использоваться для энергетических целей организма. Энергия жирных кислот используется также для поддержания жизнедеятельности полезных бактерий в толстой кишке. С увеличением содержания пищевых волокон в пище увеличивается и объём полезной микрофлоры кишечника, усиливается синтез витаминов. Богатая клетчаткой пища, в частности пищевыми отрубями, способна улучшать устойчивость организма к глюкозе, как у здоровых людей, так и у больных при сахарном диабете 1 типа. Наиболее высокое содержание клетчатки в пшеничных и ржаных отрубях, хлебе из муки грубого помола, белково-отрубном хлебе, сухофруктах (черносливе, урюке, кураге), свекле, моркови, крупах (гречневой, перловой, ячневой, пшённой, овсяной).
77. Клетчатка – это главная структурная часть клеточной оболочки растений. Образуется в результате фотосинтеза. Целлюлоза растений является питанием травоядным животным (к примеру, жвачным), в их организме клетчатка расщепляется при помощи фермента целлюлаза. Он довольно редкий, поэтому в чистом виде целлюлоза в пищу человека не употребляется. Клетчатка в пище дает человеку чувство сытости и улучшает подвижность (перистальтику) . Больше всего клетчатки содержится в отрубях из пшеницы и ржи, в хлебе из грубо перемолотой муки, в хлебе из белков и отрубей, в сухих фруктах, морковке, крупах, свекле.
Гидролиз клетчатки
Гидролиз клетчатки. Древесные опилки, желательно еловые, просушите в сушильном шкафу при температуре 105-110 °С до постоянного веса. Затем поместите 25 г сухих опилок в большую колбу и прилейте в нее 175 мл 55-процентного раствора серной кислоты (уд. вес 1,45). Жидкость кипятите в течение одного часа. Во время нагревания колбу встряхните несколько раз (осторожно). Через час в колбу налейте 1,5 л воды и продолжайте кипятить 2-2,5 часа. Происходит следующая реакция: (С6Н10О5)n + nH2O = nС6Н12O6. Когда жидкость остынет, фильтруйте через ткань. Фильтрат нейтрализуйте известковым молоком до тех пор, пока лакмус не даст отрицательную реакцию на кислоту. Определите при помощи жидкости Фелинга наличие глюкозы в полученном растворе. Для получения кристаллического сахара требуется обработать во много раз большее количество древесных опилок.
79. АМИНЫ– класс соединений, представляющий собой органические производные аммиака, в котором один, два или три атома водорода замещены органическими группами. Отличительный признак – наличие фрагмента R–N<, где R – органическая группа. В зависимости от числа органических групп, связанных с атомом азота, различают: первичные амины – одна органическая группа у азота RNH2 вторичные амины – две органических группы у азота R2NH, органические группы могут быть различными R'R"NH третичные амины – три органических группы у азота R3N или R'R"R"'N По типу органической группы, связанной с азотом, различают алифатические СH3 – N< и ароматические С6H5 – N< амины, возможны и смешанные варианты. По числу аминогрупп в молекуле амины делят на моноамины СH3 – NН2, диамины H2N(СH2)2NН2, триамины и т.д. Номенклатура аминов.к названию органических групп, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке, например, СН3NHС3Н7 – метилпропиламин, СН3N(С6Н5)2 – метилдифениламин. Правила допускают также составлять название, взяв за основу углеводород, в котором аминогруппу рассматривают как заместитель. В таком случае ее положение указывают с помощью числового индекса: С5Н3С4Н2С3Н(NН2)С2Н2С1Н3 – 3-аминопентан (верхние числовые индексы синего цвета указывают порядок нумерации атомов С). Для некоторых аминов сохранились тривиальные (упрощенные) названия: С6Н5NH2 – анилин (название по правилам номенклатуры – фениламин).
Физические свойства аминов.Первые представители ряда аминов – метиламин CH3NH2, диметиламин (CH3)2NH, триметиламин (CH3)3N и этиламин C2H5NH2 – при комнатной температуре газообразные, далее при увеличении числа атомов амины становятся жидкостями, а при увеличении длины цепи до 10 атомов С – кристаллическими веществами. Растворимость аминов в воде убывает по мере увеличения длины цепи и при возрастании числа органических групп, связанных с азотом (переход к вторичным и третичным аминам). Запах аминов напоминает запах аммиака, высшие (с большими R) амины практически лишены запаха. Связь N–H является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи (несколько более слабые, чем Н-связи с участием группы О–Н).
Это объясняет относительно высокую температуру кипения аминов по сравнению с неполярными соединениями со сходной молекулярной массой. Например:
При обычной температуре только низшие жирные амины CH3NH2, (CH3)2NH, (CH3)3N – газы (с запахом аммиака), средние амины – жидкости с резким запахом гниющей рыбы, высшие – твердые вещества без запаха.
Амины способны к образованию водородных связей с водой:
Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия образованию водородных связей. Ароматические амины – бесцветные жидкости и твердые вещества с неприятным запахом, в воде практически не растворяются.
Химические свойства аминов Амины, являясь производными аммиака, имеют сходное с ним строение и проявляют подобные ему свойства Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:
Поэтому амины подобно аммиаку проявляют свойства оснований.
Свойства аминов как оснований (акцепторов протонов)
1. Водные растворы алифатических аминов проявляют щелочную реакцию, т.к. при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:
Связь протона с амином, как и с аммиаком, образуется по донорно-акцепторному механизму за счет неподеленной электронной пары атома азота. Алифатические амины – более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I-эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном. 2. Взаимодействуя с кислотами, амины образуют соли:
Соли аминов – твердые вещества, хорошо растворимые в воде. При нагревании щелочи вытесняют из них амины:
Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его p-электронами.
II. Окисление аминов
Амины, особенно ароматические, легко окисляются на воздухе. В отличие от аммиака, они способны воспламеняться от открытого пламени. 4СH3NH2 + 9O2 ® 4CO2 + 10H2O + 2N2
III. Взаимодействие с азотистой кислотой Азотистая кислота HNO2 – неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO2, как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой: KNO2 + HCl - НNO2 + KCl или NO2- + H+ - НNO2
Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.
- Первичные алифатические амины c HNO2 образуют спирты:
R-NH2 + HNO2 ® R-OH + N2 + H2O
- Первичные ароматические амины при повышенной температуре реагируют аналогично, образуя фенолы.
Вторичные амины (алифатические и ароматические) под действием HNO2 превращаются в нитрозосоединения (вещества с характерным запахом) * Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения.
ПрименениеАмины - промежут. продукты в производстве красителей, пестицидов, полимеров (в т.ч. полиамидов и полиуретанов), ингибиторов коррозии, ПАВ, флотореагентов, абсорбентов, лек. ср-в (напр., сульфамидных препаратов), ускорителей вулканизации, антиоксидантов и др. Алифатические амины поражают нервную систему, вызывают нарушения проницаемости стенок кровеносных сосудов и клеточных мембран, ф-ций печени и развитие дистрофии. Ароматические амины вызывают образование метгемоглобина, угнетающего центр, нервную систему. Нек-рые ароматич. А - канцерогены, вызывающие рак мочевого пузыря у человека (напр., бета-нафтиламин, бензидин, 4-аминобифенил).
80. Анилин (фениламин) C5H5NH2 – представитель класса ароматических аминов, в которых аминогруппа связана напрямую с бензольным кольцом.
Строение анилина. Неподеленная пара атома азота реагирует с π-системой бензольного кольца. Взаимодействие можно представить так:
На атоме азота появляется частично положительный заряд, и основные свойства понижаются. А в бензольном кольце, наоборот, электронная плототность повышается, и наиболее сильно в орто- и пара- положениях:
Физические свойства анилина.
Анилин – бесцветная маслянистая жидкость, немного тяжелее воды, мало растворимы в воде, но хорошо – в этиловом спирте и в бензоле.
Химические свойства анилина. Анилин является более слабым основанием, чем алифатические амины, т.к. электронная пара азота частично смещена в бензольное кольцо. Анилин вступает в реакцию с сильными кислотами, образуя соли фениламмония, которые растворимы в воде, но нерастворимы в неполярных органических растворителях: 2. Анилин вступает в реакции электрофильного замещения в безольном кольце. Аминогруппа направляет замещение в орто- и пара- положения. Анилин легко бромируется, при этом выпадает белый осадок:
3. С концентрированной азотной кислотой анилин взаимодействует со взрывом. На время реакции можно защитить аминогруппу (превратить ее в амидную перед нитрованием), а после нитрования гидролизовать амид с образованием исходной аминогруппы:
3. При взаимодействии с азотистой кислотой образуются соли диазония:
4. Анилин легко подвергается окислению, темнее при хранении. Если на анилин действовать хлорной известью, то водный раствор анилин окрашивается в интенсивный фиолетовый цвет. Это реакция является качественной.
Применение анилина.
Анилин используют преимущественно для синтеза лекарственных средств и красителей:
Одним из важнейших направлений применения анилина остается производство красителей. Свыше 160 красителей получено на основе анилина и еще большее количество - из его производных [467]. Важнейшие красители, получаемые из анилина: азокрасители (анилиновый желтый, хризоидин, хризои - дин Р, жирорастворимый оранжевый, пигмент коричневый.