Классификация и биологическая роль углеводов

Пул глюкозы в организме, поступление глюкозы в клетки

Преобладающим в количественном отношении моносахаридом, при-сутствующим во внутренней среде организма, является глюкоза. Ее содержание в крови относительно постоянно и является одной из кон-стант гомеостаза. Содержание глюкозы в крови составляет 3,3 - 5,5 мМ/л или 80 - 100 мг/дл. Пул глюкозы, т.е. общее содержание сво-бодной глюкозы в организме, составляет величину порядка 20 г. Из них 5 - 5,5 г содержится в крови, остальная глюкоза распределена в клетках и межклеточной жидкости. Из приведенных цифр следует, что концентрация глюкозы в клетках значительно ниже, чем в крови, что создает условия для поступления глюкозы из крови в клетки пу-тем простой или облегченной диффузии.

Пул глюкозы в организме есть результат динамического равновесия процессов, обеспечивающих пополнение этого пула и процессов, сопровождающихся использованием глюкозы из пула для нужд органов тканей.

Пополнение пула глюкозы идет за счет следующих процессов:

а/ поступление глюкозы из кишечника;

б/ образование глюкозы из других моносахаридов, например, из

галактозы или фруктозы;

в/ распад резервного гликогена в печени / гликогенез /; г/ синтез глюкозы из неуглеводных соединений,т.е. глюконеогенез.

Основные направления использования глюкозы из пула:

а/ окислительный распад глюкозы / аэробное окисление до СО2 и Н2О, анаэробное окисление до лактата и др./;

б/ синтез резервного гликогена;

в/ синтез липидов;

г/ синтез других моносахаридов или их производных; д/ синтез заменимых аминокислот; е/ синтез других азотсодержащих соединений, необходимых клеткам.

Транспорт глюкозы из крови или межклеточной жидкости в клет-ки идет по механизму облегченной диффузии, т.е. по градиенту кон-центрации с участием белка-переносчика. Эффективность работы ме-ханизма этого транспорта в клетках большинства органов и тканей зависит от инсулина. Инсулин увеличивает проницаемость наружных клеточных мембран для глюкозы, увеличивая количество белка-пере-носчика за счет дополнительного его поступления из цитозоля в мем-браны . Основная масса клеток различных органов и тканей является в этом контексте инсулинзависимыми, однако по крайней мере в клетках трех типов эффективность переноса глюкозы через их наруж-ные мембраны не зависит от инсулина, это эритроциты, гепатоциты и клетки нервной ткани. Эти ткани получили название инсулиннезави-симых тканей. но я еще раз хочу подчеркнуть, что речь идет лишь о независимости транспорта глюкозы в эти клетки от инсулина и ни о чем более. Так, доказано, что и клетки мозга и гепатоциты имеют в составе своих наружных мембран рецепторы для инсулина.

Глюкоза, поступившая в клетку, подвергается в клетке единс-твенному превращению - она фосфорилируется с участием АТФ:

Глюкоза + АТФ > Глюкозо-6-фосфат + АДФ

В большинстве органов и тканей ферментом, катализирующим эту ре-акцию, является гексокиназа. Этот фермент обладает высоким сродс-твом к глюкозе и способен ее фосфорилировать при низких концент-рациях глюкозы.В гепатоцитах есть еще один фермент - глюкокиназа, который также может катализировать эту реакцию, но обладая мень-шим сродством к глюкозе, он работает лишь в условиях высоких кон-центраций глюкозы в клетке и обычно принимает участие лишь в про-цессе синтеза гликогена в печени. Реакция, катализируемая гексо-киназой, сопровождается большой потерей свободной энергии [ DG = - 5 ккал/моль ] и в условиях клетки является необратимой, а глю-козо-6-фосфат представляет собой активированную форму глюкозы. Существенным является то обстоятельство, что наружная клеточная мембрана непроницаема для гл-6-ф и в результате фосфорилирования глюкоза как бы «запирается» в клетке. С другой стороны, быстрое превращение глюкозы в гл-6-ф позволяет поерживать крайне низкую концентрацию глюкозы в клетке, сохраняя тем самым градиент кон-центрации глюкозы между внеклеточной жидкостью и внутриклеточной средой.

О Б М Е Н У Г Л Е В О Д О В

Биосинтетические процессы, протекающие в клетках, нуждаются не только в энергии, им необходимы также восстановительные эквиваленты в виде НАДФН+Н + и целый ряд моносахаридов, имеющих в своем составе пять атомов углерода,такие как рибоза,ксилоза и др.Образование восстановленного НАДФ идет в пентозном цикле окисления углеводов, а образование пентоз может происходить как в пентозном цикле окисления, так и в других метаболических путях.

3.1. Пентозный путь окисления углеводов

Этот метаболический путь известен также как пентозофосфатный цикл окисления глюкозы или апотомический путь окисления. Пентозный путь окисления углеводов включает в себя достаточно много отдельных парциальных реакций. Он может быть разделен на две части: окислительный его этап и неокислительный этап. Мы с вами остановимся преимущественно на его окислительном этапе, поскольку этого вполне достаточно, чтобы понять биологическую роль рассматриваемого метаболического процесса.

Итак, как обычно, первой реакцией является реакция фосфорилирования глюкозы:

Глюкоза + АТФ > Гл6ф + АДФ катализируемая гексокиназной.

На следующей стадии происходит окисление Гл-6-ф путем его дегидрирования: Реакция катализируется глюкозо6фосфатдегидрогеназай.

Далее идет взаимодействие 6фосфоглюконолактона с молекулой воды, что сопровождается разрывом цикла с образование 6фосфоглюконовой кислоты. Реакция катализируется ферментом лактоназой . А затем 6фосфоглюконат подвергается окислительному декарбоксилированию с образованием рибулозо5фосфата, углекислого газа и восстановленного НАДФ; эта реакция катализируется 6 фосфоглюконатде гидрогеназой . Последовательность из двух описанных реакций представлена на приведенной ниже схеме:

Суммарное уравнение окислительного этапа пентозного цикла окисления :

Глюкоза + АТФ + 2 НАДФ + + Н 2 О > Рибулозо5ф + СО 2 + 2НАДФН+Н + + АДФ

Часто началом пентозного цикла окисления углеводов считают реакцию окисления Гл6ф, в последнем случае суммарное уравнение окислительного этапа цикла приобретает вид:

Гл6ф + 2НАДФ + + Н 2 О > Рибулозо5ф + СО 2 + 2НАДФН+Н +

В ходе неокислительного этапа цикла в результате изомеризации образуются необходимые для клетки фосфорилированные пентозы : рибозо5фосфат и ксилулозо5фосфат. Кроме того, важно отметить ,что на этом этапе образуются промежуточные продукты, идентичные с промежуточными продуктами первого этапа аэробного окисления глюкозы: 3фосфоглицериновый альдедид и Фр6ф. За счет этих общих промежуточных соединений создается возможность переключения потока метаболитов с пентозного цикла окисления на путь аэробного (или анаэробного) окисления глюкозы и наоборот.

За шесть оборотов пентозного цикла окисления полностью сгорает один остаток глюкозы, так что суммарное уравнение окисления глюкозы в цикле, начиная с Гл6ф, можно представить в следующем виде:

Гл6ф + 7 Н 2 О + 12 НАДФ + > 6 СО 2 + Ф + 12 НАДФН+Н +

Пентозофосфатный цикл активно функционирует в печени, жировой ткани, коре надпочечников, семенниках и в молочной железе в период лактации. В этих тканях активно идут процессы синтеза высших жирных кислот, аминокислот или стероидов, нуждающиеся в восстановительных эквивалентах в виде НАДФН+Н + .Цикл интенсивно работает также в эритроцитах, в которых НАДФН+Н + используется для подавления перекисного окисления мембранных липидов. Мышечная ткань содержит очень малые количества глюкозо6фосфатдегидрогеназы и 6фосфоглюконатдегидрогеназы, тем не менее, она также способна синтезировать необходимую клеткам рибозу.

3.2. Путь образования глюкуроновой кислоты

Глюкуроновая кислота является соединением, выполняющим в организме несколько функций:

а) она входит в состав гетероолиго и гетерополисахаридов,выполняя таким образом структурную функцию,

б) она принимает участие в процессах детоксикации,

в) она может быть преобразована в клетках в пентозу ксилулозу ( которая , кстати, является общим промежуточным метаболитом с пентозным циклом окисления глюкозы ).

В организме большинства млекопитающих по этому метаболическому пути идет синтез аскорбиновой кислоты; к сожалению, у приматов и морских свинок не синтезируется один из ферментов, необходимых для превращения глюкуроновой кислоты в аскорбиновую и человек нуждается в поступлении аскорбиновой кислоты с пищей.

Схема метаболического пути синтеза глюкуроновой кислоты:

3.3. Г л ю к о н е о г е н е з

В условиях недостаточного поступления углеводов в пище или даже их полного отсутствия все необходимые для организма человека углеводы могут синтезироваться в клетках. В качестве соединений, углеродные атомы которых используются при биосинтезе глюкозы,могут выступать лактат, глицерол, аминокислоты и др. Сам процесс синтеза глюкозы из соединений неуглеводной природы носит название глюконеогенез . В дальнейшем из глюкозы или из промежуточных продуктов ее метаболизма могут быть синтезированы все другие соединения, относящиеся к углеводам.

Рассмотрим процесс синтеза глюкозы из лактата. Как мы уже упоминали, в гепатоцитах примерно 4/5 поступающего из крови лактата преобразуется в глюкозу. Синтез глюкозы из лактата не может быть простым обращением процесса гликолиза, так как в гликолиз включены три киназные реакции: гексокиназная,фосфофруктокиназная и пируваткиназная необратимые по термодинамическим причинам. Вместе с тем, в ходе глюконеогенеза используются ферменты гликолиза, катализирующие соответствующие обратимые равновесные реакции, типа альдолазы или енолазы.

Глюконеогенез из лактата начинается с превращения последнего в пируват с участием фермента лактатдегидрогеназы:

СООН СООН

2 НСОН + 2 НАД + > 2 С=О + 2 НАДН+Н +

СН 3 СН 3

Лактат Пируват

Наличие индекса «2» перед каждым членом уравнения реакции обусловлено тем, что для синтеза одной молекулы глюкозы требуется две молекулы лактата.

Пируваткиназная реакция гликолиза необратима, поэтому невозможно получить фосфоенолпируват (ФЭП) непосредственно из пирувата. В клетке эта трудность преодолевается с помощью обходного пути, в котором участвуют два дополнительных фермента, не работающие при гликолизе. Вначале пируват подвергается энергозависимому карбоксилированию с участием биотинзависимого фермента пируват карбоксилазы :

СООН СООН

2 С=О + 2 СО 2 + 2 АТФ > 2 С=О + 2 АДФ + 2 Ф

СН 3 СН 2

Пируват

Щавелевоуксусная кта А затем в результате энергозависимого декарбоксилирования щавелевоуксуная кислота превращается в ФЭП. Эту реакцию катализирует фермент фосфоенолпируваткарбоксикиназа ( ФЭПкарбоксикиназа ) , а источником энергии является ГТФ:

Щавелево

2 уксусная + 2 ГТФ Д> 2 С ~ ОРО 3 Н 2 +2 ГДФ +2 Ф

кислота СН 2

Фосфоенолпируват

Далее все реакции гликолиза вплоть до реакции, катализируемой фосфофруктокиназой обратимы. Необходимо лишь наличие 2 молекул восстановленного НАД, но он получен в ходе лактатдегидрогеназной реакции. Кроме того, необходимы 2 молекулы АТФ для обращения фосфоглицераткиназной киназной реакции:

2 ФЭП + 2 НАДН+Н + + 2 АТФ > Фр1,6бисФ + 2НАД + + 2АДФ + 2Ф

Необратимость фосфофруктокиназной реакции преодолевается путем гидролитеческого отщепления от Фр1,6бисФ остатка фосфорной кислоты, но для этого требуется дополнительный фермент фруктозо 1,6 бисфосфатаза :

Фр1,6бисФ + Н 2 О > Фр6ф + Ф

Фруктозо6фосфат изомеризуется в глюкозо6фосфат, а от последнего гидролитеческим путем при участии фермента глюко зо6фосфатазы отщепляется остаток фосфорной кислоты, чем преодолевается необратимость гексокиназной реакции:

Гл6Ф + Н 2 О > Глюкоза + Ф

Суммарное уравнение глюконеогенеза из лактата:

2 лактат + 4 АТФ + 2 ГТФ + 6 Н 2 О >> Глюкоза + 4 АДФ + 2 ГДФ + 6 Ф

Из уравнения следует, что на синтез 1 молекулы глюкозы из 2 молекул лактата клетка затрачивает 6 макроэргических эквивалентов. Это означает, что синтез глюкозы будет идти лишь в том случае, когда клетка хорошо обеспечена энергией.

Промежуточным метаболитом глюконеогенеза являются ЩУК, которая одновременно является и промежуточным метаболитом цикла трикарбонывых кислот. Отсюда следует: любое соединение , углеродный

скелет которого может быть превращен в ходе обменных процессов в один из промежуточных продукта цикла Кребса или в пируват , может через преобразование его в ЩУК быть использовано для синтеза глюкозы . Этим путем для синтеза глюкозы используются углеродные скелеты ряда аминокислот. Некоторые аминокислоты, например, аланин или серин, в ходе своего расщепления в клетках преобразуются в пируват, также, как мы уже выяснили, являющийся промежуточным продуктом глюконеогенеза. Следовательно, и их углеродные скелеты могут быть использованы для синтеза глюкозы. Наконец, при расщеплении глицерола в клетках в качестве промежуточного продукта образуется 3фосфоглицериновый альдегид, который тоже может включаться в глюконеогенез.

Мы выяснили, что для протекания глюконеогенеза требуется 4 фермента, не принимающих участия в окислительном расщеплении глюкозы это пируваткарбоксилаза, фосфоенолпируваткарбоксикиназа, фруктозо1,6бисфосфатаза и глюкозо6фосфатаза. Естественно ожидать, что регуляторными ферментами глюконеогенеза будут ферменты, не принимающие участие в расщеплении глюкозы. Такими регуляторными ферментами являются пируваткарбоксилаза и фруктозо1,6бисфосфатаза. Активность пируваткарбоксилазы ингибируется по аллостерическому механизму высокими концентрациями АДФ,а активность Фр1,6бисфосфатазы также по аллостерическому механизму угнетается высокими концентрациями АМФ. Таким образом, в условиях дефицита энергии в клетках глюконеогенез будет заторможен, вопервых, изза недостатка АТФ, а, вовторых, изза аллостерического ингибирования двух ферментов глюконеогенеза продуктами расщепления АТФ АДФ и АМФ.

Нетрудно заметить, что скорость гликолиза и интенсивность глюконеогенеза регулируются реципрокно. При недостатке энергии в клетке работает гликолиз и ингибирован глюконеогенез, в то время как при хорошем энергетическом обеспечении клеток в них работает глюконеогенез и ингибировано расщепление глюкозы.

Важным звеном в регуляции глюконеогенеза являются регуляторные эффекты ацетилКоА, который выступает в клетке как аллостерический ингибитор пируватдегидрогеназного комплекса и одновременно служит аллостерическим активатором пируваткарбоксилазы. Накопление ацетилКоА в клетке, образующегося в больших количествах при окислении высших жирных кислот, ингибирует аэробное окисление глюкозы и стимулирует её синтез.

Биологическая роль глюконеогенеза чрезвычайно велика, так как глюконеогенез не только обеспечивает органы и ткани глюкозой, но еще и перерабатывает образующийся в тканях лактат, препятствуя тем самым развитию лактатацидоза. За сутки в организме человека за счет глюконеогенеогенеза может быть синтезировано до 100120 г глюкозы, которая в условиях дефицита углеводов в пище в первую очередь идет на обеспечение энергетики клеток головного мозга. Кроме того , глюкоза необходима клеткам жировой ткани как источник глицерола для синтеза резервных триглицеридов, глюкоза необходима клеткам различных тканей для по ержания нужной им концентрации промежуточных метаболитов цикла Кребса, глюкоза служит единственным видом энергетического топлива в мышцах в условиях гипоксии , её окисление является также единственным источником энергии для эритроцитов.

3.4. Общие представления об обмене гетерополисахаридов

Соединения смешанной природы, одним из компонентов которых является углевод, получили собирательное название гликоконьюгаты . Все гликоконьюгаты принято делить на три класса:

1.Гликолипиды.

2.Гликопротеиды ( на углеводный компонент приходится не более 20% общей массы молекулы ).

3.Гликозаминопротеогликаны ( на белковую часть молекулы обычно приходится 23% общей массы молекулы ).

Биологическая роль этих соединений была рассматрена ранее. Следует лишь еще раз упомянуть о большом разнообразии мономерных единиц, образующих углеводные компоненты гликоконьюгатов: моносахариды с различным числом атомов углерода, уроновые кислоты, аминосахара, сульфатированные формы различных гексоз и их производных, ацетилированные формы аминосахаров и др. Эти мономеры могут быть соединены между собой различными типами гликозидных связей с образованием линейных или разветвленных структур, и если из 3 различных аминокислот можно построить лишь 6 различных пептидов, то из 3 мономеров углеводной природы можно построить до 1056 разных олигосахаридов. Такое разнообразие структуры гетерополимеров углеводной природы говорит о колоссальном объёме содержащейся в них информации, вполне сопоставимом с объемом информации, имеющимся в белковых молекулах.

3.4.1. Представление о синтезе углеводных компонентов гликозаминопротеогликанов

Углеводными компонентами гликозаминопротеогликанов являются гетерополисахариды: гиалуроновая кислота, хондроитинсульфаты, кератансульфат или дерматансульфат, присоединенные к полипептидной части молекулы с помощью Огликозидной связи через остаток серина. Молекулы этих полимеров имеют неразветвленную структуру. В качестве примера можно привести схему строения гиалуроновой кислоты:

Из приведенной схемы следует,что молекула гиалуроновой кислоты присоединена к полипептидной цепи белка с помощью Огликозидной связи. Сама же молекула состоит из связующего блока, состоящего из 4 мономерных единиц ( Кси, Гал, Гал и Гл.К ), соединенных между собой опятьтаки гликозидными связями и основной части, построенной из «n»ного числа биозных фрагментов, в состав каждого из которых входит остаток ацетилглюкозамина ( АцГлАм ) и остаток глюкуроновой кислоты ( Гл.К), причем связи внутри блока и между блоками—Огликозидные. Число «n» составляет несколько тысяч.

Синтез полипептидной цепи идет на рибосомах с помощью обычного матричного механизма. Далее полипептидная цепь поступает в аппарат Гольджи и уже непосредственно на ней происходит сборка гетерополисахаридной цепи. Синтез носит нематричный характер, поэтому последовательность присоединения мономерных единиц определяется специфичностью участвующих в синтезе ферментов. Эти ферменты носят общее название гликозилтрансферазы. Каждая отдельная гликозилтрансфераза обладает субстратной специфичностью как к присоединяемому ею моносахаридному остатку, так и к структуре надстраиваемого ею полимера.

Пластическим материалом для синтеза служат активированные формы моносахаридов. В частности, при синтезе гиалуроновой кислоты используются УДФпроизводные ксилозы, галактозы, глюкуроновой кислоты и ацетилглюкозамина.

Вначале под действием первой гликозилтрансферазы ( Е 1 ) происходит присоединение остатка ксилозы к радикалу серина полипептидной цепи, затем при участии двух различных гликозилтрансфераз ( Е 2 и Е 3 ) к строящейся цепи присоединяется 2 остатка галактозы и при действии четвертой галактозилтрансферазы ( Е 4 ) завершается формирование связующего олигомерного блока присоединением остатка глюкуроновой кислоты. Дальнейшее наращивание полисахаридной цепи идет путем повторного чередующегося действия двух ферментов, один из которых катализирует присоединение остатка ацетилглюкозамина ( Е 5 ) , а другой остатка глюкуроновой кислоты ( Е 6 ).

Синтезированная таким образом молекула поступает из аппарата Гольджи в область наружной клеточной мембраны и секретируется в межклеточное пространство.

В состав хондроитинсульфатов, кератансульфатов и др. гликозаминогликанов встречаются сульфатированные остатки мономерных единиц. Это сульфатирование происходит после включения соответствующего мономера в полимер и катализируется специальными ферментами. Источником остатков серной кислоты является фосфоаденозинфосфосульфат ( ФАФС ) активированная форма серной кислоты.

Галактоземия

Значительно опаснее для детей раннего возраста нарушение усвоения моносахарида галактозы—так называемая галактоземия. У таких детей в крови повышено содержание галактозы, этот моносахарид выделяется также с мочой. Причиной развития заболевания является врожденное нарушения синтеза одного из ферментов обмена галактозы. При швейцарском варианте галактоземии у ребенка нарушен синтез галактокиназы, отвечающей за фосфорилирование в клетках галактозы. Галактоза не усваивается и часть её восстанавливается в токсичный для клеток шестиатомный спирт галактитол.

При африканском варианте галактоземии у ребенка нарушен синтез фермента гексозо1фосфатуридилтрансферазы , в результате в клетках накапливается галактоза и галактозо1фосфат. Их накопление и оказывает токсическое воздействие на клетки. Африканский вариант галактоземии более тяжелый: вероятно дело в том, что накапливающийся при этом варианте галактозо1фосфат, как и любой другой фосфорный эфир моносахаридов, не способен выходить из клеток, тогда как свободная галактоза, накапливающаяся в организме при швейцарском варианте, свободно покидает клетки и легко выводится с мочой.

При галактоземии признаки заболевания появляются уже через несколько дней после начала кормления: появляются тошнота, рвота, дегидратация, желтушность, позднее присоединяются гепатоспленомегалия и поражение почек. Для больных детей характерны задержка умственного и физического развития, раннее появление катарактыпомутнения хрусталика. Лечение перевод на диету, не содержащую галактозы. Интересно, что у детей с африканским вариантом галактоземии к примерно годовалому возрасту в печени начинается синтез фермента галактозо1фосфатуридилтрансферазы и усвоение галактозы постепенно улучшается, но к этому времени в организме ребенка уже развивается ряд необратимых изменений. Поэтому лишь своевременная диагностика галактоземии позволяет спасти ребенка.

Гликогеновые болезни

Гликогеновые болезни связаны с наследственными,т.е. генетически обусловленными нарушениями метаболических путей синтеза или распада гликогена. Могут наблюдаться или избыточное накопление гликогена в клетках гликогеноз, или отсутствие (пониженное содержание) гикогена в клетках агликогеноз.

При гликогенозах в результате отсутствия одного из ферментов, участвующих в расщеплении гликогена, гликоген накапливается в клетках, причем избыточное накопление гликогена приводит к нарушению функции клеток и органов. В некоторых случаях дефектным является один из ферментов синтеза гликогена, в результате в клетках накапливается гликоген с аномальной структурой, который расщепляется медленнее и в результате он накапливается в клетках.

Гликогенозы могут быть локальными, в этом случае гликоген накапливается в какомлибо одном (иногда двух) органе, но они могут быть и генерализованными, в таком случае гликоген накапливается в клетках многих органов. Известно более десятка гликогенозов, отличающихся друг от друга характером энзимного дефекта. Примерами могут служить:

а) Болезнь МакАрдля ( гликогеноз V типа ). Дефектным ферментом у больных является фосфорилаза мышц. Для этих больных характерны мышечная слабость, боли в мышцах при умеренной физической нагрузке. Гликоген накапливается в миоцитах.

б) Болезнь Херса ( гликогеноз V1 типа ). В основе заболевания лежит нарушение активации печеночной фосфорилазы в результате отсутствия, например, киназы фосфорилазы. Для этого гликогеноза характерно накопление гликогена в печени, гепатоспленомегалия.

в) Болезнь Андерсена ( гликогеноз 1V типа ). Этот гликогеноз вызван дефектом фермента ветвления в клетках различных органов и тканей, в результате чего в клетках синтезируются длинные полимерные молекулы, напоминающие по структуре амилозу крахмала.

Такие молекулы крайне медленно расщепляются фосфорилазой изза малого количества свободных концов полисахаридных цепей, к которым может присоединяться фермент. Нарушается функция многих органов и тканей.

При агликогенозах содержания гликогена в клетках снижено. Самый характерный признак агликогенозов выраженное снижение содержания глюкозы в крови натощак. В результате этой гипоглюкоземии могут возникнуть судороги, рвота, потеря сознания. Постоянный недостаток глюкозы для питания мозга часто приводит к задержке умственного развития. Обычно такие больные погибают в детском возрасте, хотя в принципе частое кормление может существенно ослабить проявление болезни.

Классификация и биологическая роль углеводов

Углеводы составляют незначительную часть общего сухого веса тканей человеческого организма - не более 2%, в то время как на белки, например, приходится до 45% сухой массы тела. Тем не ме-нее, углеводы выполняют в организме целый ряд жизненно важных функции, принимая участие в структурной и метаболической органи-зации органов и тканей.

С химической точки зрения углеводы представляют собой много-атомные альдегидо- или кетоноспирты или их полимеры, причем моно-мерные единицы в полимерах соединены между собой гликозидными связями.

1.1. Классификация углеводов.

Углеводы делятся на три больших группы: моносахариды и их производные, олигосахариды и полисахариды.

1.1.1. Моносахариды в свою очередь делятся, во первых, по характеру карбонильной группы на альдозы и кетозы и, во-вто-рых,по числу атомов углерода в молекуле на триозы, тетрозы, пен-тозы и т.д. Обычно моносахариды имеют тривиальные названия: глю-коза, галактоза, рибоза, ксилоза и др. К этой же группе соедине-ний относятся различные производные моносахаридов, важнейшими из них являются фосфорные эфиры моносахаридов [ глюкозо-6-фосфат, фруктозо-1,6-бисфосфат, рибозо-5-фосфат и др.], уроновые кислоты [галактуроновая, глюкуроновая, идуроновая и др.], аминосахара

[глюкозамин, галактозамин и др.], сульфатированные производные уроновых кислот, ацетилированные производные аминосахаров и др.Об-щее количество мономеров и их производных составляет несколько де-сятков соединений, что не уступает имеющемуся в организме коли-честву индивидуальных аминокислот.

1.1.2. Олигосахариды, представляющие собой полимеры, мономерными единицами которых являются моносахариды или их произ-водные. Число отдельных мономерных блоков в полимере может дости-гать полутора или двух / не более / десятков. Все мономерные еди-ницы в полимере связаны гликозидными связями. Олигосахариды в свою очередь делятся на гомоолигосахариды, состоящие из одинаковых мономерных блоков [ мальтоза ] , и гетероолигосахариды - в их состав входят различные мономерные единицы [ лактоза ]. В боль-шинстве своем олигосахариды встречаются в организме в качестве структурных компонентов более сложных молекул - гликолипидов или гликопротеидов. В свободном виде в организме человека могут быть обнаружены мальтоза, причем мальтоза является промежуточным про-дуктом расщепления гликогена, и лактоза, входящая в качестве ре-зервного углевода в молоко кормящих женщин. Основную массу олиго-сахаридов в организме человека составляют гетероолигосахариды гликолипидов и гликопротеидов. Они имеют чрезвычайно разнообраз-ную структуру, обусловленную как разнообразием входящих в них мо-номерных единиц, так и разнообразием вариантов гликозидных связей между мономерами в олигомере [a- и b-гликозидные связи; связи, со-единяющие различные атомы углерода в соседних мономерных единицах: a - 1,4, a - 1,3, a - 1,6 и др. ].

1.1.3. Полисахариды, представляющие собой полимеры, построенные из моносахаридов или их производных, соединенных между собой гликозидными связями, с числом мономерных единиц от нес-кольких десятков до нескольких десятков тысяч. Эти полисахариды могут состоять из одинаковых мономерных единиц, т.е. являться го-мополисахаридами, или же в их состав могут входить различные мо-номерные единицы - тогда мы имеем дело с гетерополисахаридами. Единственным гомополисахаридом в организме человека является гли-коген, состоящий из остатков a-D - глюкозы. Более разнообразен на-бор гетерополисахаридов - в организме присутствуют гиалуроновая кислота, хондроитинсульфаты, кератансульфат, дерматансульфат, ге-парансульфат и гепарин. Каждый из перечисленных гетерополисахари-дов состоит из индивидуального набора мономерных единиц.Так основ-ными мономерными единицами гиалуроновой кислоты являются глюку-роновая кислота и N-ацетилглюкозамин,тогда как в состав гепарина входят сульфатированный глюкозамин и сульфатированная идуроновая кислота.

1.2. Функции углеводов различных классов Функции углеводов в организме разнообразны и, естественно, различны для разных классов соединений. Моносахариды и их производные выполняют, во-первых, энергетическую функцию: окислительное расщепление этих соединений дает организму 55-60 % необходимой ему энергии4. Во-вторых, промежуточные продукты распада моносахаридов и их производных используются в клетках для синтеза

других необходимых клетке веществ, в том числе соединений других классов; так, из промежуточных продуктов метаболизма глюкозы в

клетках могут синтезироваться липиды и заменимые аминокислоты, правда, в последнем случае необходим дополнительный источник ато-

мов азота аминогрупп. В третьих, моносахариды и их производные выполняют структурную функцию, являясь мономерными единицами дру-

гих, более сложных молекул, таких как полисахариды или нуклеотиды.

Главной функцией гетероолигосахаридов является структурная функция - они являются структурными компонентами гликопротеидов и гликолипидов. В этом качестве гетероолигосахариды участвуют в ре-ализации гликопротеидами целого ряда функций: регуляторной [ гор-моны гипофиза тиротропин и гонадотропины - гликопротеиды ],комму-никативной [ рецепторы клеток - гликопротеины ], защитной [ анти-тела - гликопротеины ]. Кроме того, гетероолигосахаридные блоки, входя в состав гликолипидов и гликопротеидов, участвуют в форми-ровании клеточных мембран, образуя, например, такой важный эле-мент клеточной структуры как гликокалликс.

Гликоген - единственный гомополисахарид, имеющийся в орга-низме животных - выполняет резервную функцию. причем он является резервом не только энергетическим, но также и резервом пластичес-кого материала. Гликоген в том или ином количестве присутствует практически во все клетках человеческого организма. Запасы глико-гена в печени могут составлять до 3-5 % от сырой массы этого ор-гана [ порой до 10 % ], а его содержание в мышцах - до 1% общей массы ткани. Учитывая массу этих органов, общее количество глико-гена в печени может составлять 150 - 200 г, а запасы гликогена в мыщцах - до 600 г.

Гетерополисахариды выполняют в организме структурную функцию они входят в состав глизаминопротеогликанов; последние,наряду с структурными белками типа коллагена или эластина, формируют межк-леточное вещество различных органов и тканей. Гликозаминопротеог-гликановые агрегаты, имея сетчатую структуру, выполняют функцию молекулярных фильтров, препятствующих или сильно тормозящих дви-жение макромолекул в межклеточной среде. Кроме того, молекулы гетерополисахаридов имеют в своей структуре множество полярных и несущих отрицательный заряд группировок, за счет которых они могут связывать большое количество воды и катионов, выполняя роль свое-образных депо для этих молекул.

Функции некоторых углеводов, имеющихся в организме, весьма специфичны. Так, гепарин является естественным антикоагулянтом - он препятствует свертыванию крови в сосудах, а лактоза, о чем уже упоминалось, является резервным углеводом женского молока.

2.Усвоение экзогенных углеводов

В обычных условиях основным источником углеводов для человека являются углеводы пищи. Суточная потребность в углеводах состав-ляет примерно 400 г, причем крайне желательно. чтобы легко усво-яемые углеводы [ глюкоза, сахароза, лактоза и пр.] составляли не более 25 % их общего количества в пищевом рационе. В процессе ус-воения пищи все экзогенные полимеры углеводной природы расщепля-ются до мономеров, что лишает эти полимеры видовой специфичности, а во внутреннюю среду организма из кишечника поступают лишь моно-сахариды и их производные; в дальнейшем эти мономеры используются по мере необходимости для синтеза специфичных для человека олиго-или полисахаридов.

Расщепление крахмала или гликогена пищи начинается уже в ротовой полости за счет воздействия на эти гомополисахариды амилазы и мальтазы слюны, однако этот процесс не имеет существенного значения, поскольку пища в ротовой полости находится очень короткое время. В желудке при пищеварении среда кислая и амилаза слюны,по-

падающая в желудок вместе с пищевым комком, практически не работает. Основная масса крахмала и гликогена пищи расщепляется в тонком кишечнике под действием амилазы поджелудочной железы до диса-харидов мальтозы и изомальтозы. Образовавшиеся дисахариды расщеп-ляются до глюкозы при участии ферментов, секретируемых стенкой кишечника: мальтазы и изомальтазы. Мальтаза катализирует гидролиз a-1,4-гликозидных связей, а изомальтаза - гидролиз a-1,6-глико-зидных связей.

Поступившая с пищей сахароза расщепляется в кишечнике до глюкозы и фруктозы при участии фермента сахаразы, а поступившая лактоза - до глюкозы и галактозы под действием фермента лактазы. Оба этих фермента секретируются стенкой кишечника.

Процессы расщепления гетероолигосахаридов или гетерополиса-харидов мало изучены. По-видимому, стенкой кишечника секретируют-ся гликозидазы, способные расщеплять a - и b - гликозидные связи имеющиеся в этих полимерах.

Всасывание моносахаридов происходит в тонком кишечнике, при-чем скорости всасывания различных моносахаридов существенно раз-личны. Если скорость всасывания глюкозы принять за 100 , то ско-рость всасывания галактозы составит 110, фруктозы - 43, маннозы - 19, ксилозы - 15. Принято считать, что всасывание глюкозы и га-лактозы идет с участием механизмов активного транспорта, всасыва-ние фруктозы и рибозы - по механизму облегченной диффузии, а вса-сывание маннозы или ксилозы по механизму простой диффузии. При-мерно 90 % всосавшейся глюкозы поступает из энтероцитов непос-редственно в кровь, а 10 % ее оказывается в лимфе, впрочем, в дальнейшем и эта глюкоза также оказывается в крови.

Следует отметить, что углеводы могут быть полностью исключены из пищевого рациона. В этом случае все необходимые для организма углеводы будут синтезироваться в клетках из соединений неуглеводный природы в ходе процессов, получивших название глюконеогенез.

Наши рекомендации