Взаимодействие вода — растворенное вещество
При добавлении различных веществ к воде изменяются свойства как самого вещества, так и воды. Гидрофильные вещества взаимодействуют с водой путем ион-дипольного или диполь-дипольного механизма, вызывая изменения в структуре воды, ее подвижности, а также в структуре и реакционной способности гидрофильных веществ. Гидрофобные группы добавленных веществ взаимодействуют с близлежащей водой слабо, предпочитая неводное окружение. Молекулы около гидрофобных групп становятся более упорядоченными, что приводит к уменьшению энтропии. Чтобы уменьшить контакт с водой, гидрофобные группы агрегируются. Как уже говорилось, этот процесс известен как гидрофобное взаимодействие.
Взаимодействие воды с ионами и ионными группами. Вода, взаимодействующая с ионами и ионными группами, является наиболее прочно связанной в пищевых продуктах. Нормальная структура чистой воды (основанная на водородных связях тетраэдрическая конфигурация) нарушается при добавлении диссоциирующих веществ. Для простых неорганических ионов, которые не обладают донорными или акцепторными местами для образования водородных связей, связь просто полярна. Простейший пример — гидратированные ионы хлорида натрия. Вода в мультислое существует в структурно разрушенном состоянии из-за конкурирующего влияния, с одной стороны, монослоя, с другой — внешней массы воды.
Способность ионов изменять структуру воды тесно связана с силой электрического поля иона. Малые и (или) многовалентные (главным образом, положительные) ионы, такие как Li+, Na+, Н3О+, Ca2+, Ba2+, Mg2+, А13+, F-, OH-, имеют сильное электрическое поле и являются образова-телями сетчатой структуры. Около каждого из этих ионов расположено от 4 до 6 молекул воды. Связанная вода менее лабильна и обладает более
плотной структурой по сравнению с чистой водой (см. рис. 10.4).
Рис. 10.4. Структура связанной воды
Большие и моновалентные ионы (главным образом, отрицательно заряженные ионы и большие положительные ионы), такие как К+, Cs+, NH4+, C1-, Br-, I-, NO
- 3 |
, ВrО
- 3 |
, IO
- 3 |
и С1О
- 4 |
, имеют относительно слабое электрическое поле и являются разрушителями сетчатой структуры, хотя для К+ этот эффект очень слаб.
Благодаря различной способности ионов гидратироваться, изменять водную структуру, влиять на диэлектрическую постоянную водной среды и толщину двойного электрического слоя около коллоидов, они сильно воздействуют на суспендированные и другие растворенные вещества в среде. Поэтому, например, конформация белков и стабильность коллоидов сильно зависят от вида и количества присутствующих ионов.
Взаимодействие воды с нейтральными группами, обладающими способностью образовывать водородные связи. Водородные связи вода — растворенное вещество являются более слабыми, чем при вода — ион взаимодействиях. Тем не менее, вода, связанная посредством водородных связей с растворенным веществом, может быть классифицирована как "органически связанная" или "близлежащая" и должна проявлять пониженную подвижность по сравнению с водой в массе раствора (водной фазы).
Можно ожидать, что вещества, способные к образованию водородных связей, не повышают или, по крайней мере, не разрушают нормальную структуру чистой воды. Однако в ряде случаев отмечается ориентация водородных связей, отличная от нормальной воды.
Водородные связи воды образуются с различными группами (гидроксил-, амино-, карбонил-, амид- или имино-). Например, вода образует водородные связи с двумя видами функциональных групп белков. Эти связи могут быть как в одной макромолекуле между различными группами, так и между разными макромолекулами:
Взаимодействие вода — неполярное вещество. В системе вода — неполярное вещество важны два аспекта структурных образований: образование клатратных гидратов и гидрофобные взаимодействия в белках.
Клатратные гидраты являются соединениями включения, то есть это соединения, имеющие молекулу-"хозяина", образующуюся за счет водородных связей, и молекулу-"гостя". Образования такого типа имеют место в биологических материалах.
"Гости" в клатратных гидратах являются низкомолекулярными соединениями, а "хозяин" представляет собой "сетку" из 20—74 водных молекул.
Типичные "гости" — это низкомолекулярные углеводороды, галогенуглеводороды, диоксид углерода, этиленоксид, этиловый спирт, короткоцепочные первичные, вторичные и третичные амины, алкил-аммоний. Взаимодействие между водой и "гостем" часто обусловлено слабыми ван-дер-ваальсовыми силами, но может иметь место и электростатическое взаимодействие.
Клатратные гидраты имеют важное значение, т. к. влияют на конфор-мацию, реакционноспособность и стабильность таких молекул, как белки.
Гидрофобные взаимодействия в водном окружении также важны, т. к. примерно 40% общих аминокислот в большинстве белков имеют неполярные группы. Неполярные группы других компонентов, таких как спирты, жирные кислоты, свободные аминокислоты, также могут участвовать в гидрофобных взаимодействиях. Эти взаимодействия являются слабыми, по силе они примерно такие же, как силы Ван-дер-Ваальса. Гидрофобные взаимодействия важны для четвертичной структуры многих белков, поэтому вода (и водная структура) играет важную роль в конформации белка.
468 :: 469 :: 470 :: Содержание
470 :: 471 :: Содержание
Структура и свойства льда
Молекула воды, кристаллизуясь, может связывать четыре других молекулы воды в тетраэдрической конфигурации. Поэтому образующийся лед имеет гексагональную кристаллическую решетку. Структура льда была установлена методами дифракции рентгеновских лучей, нейтронов и электронов, ИК- и Рамановской спектроскопии.
Обычный лед принадлежит к бипирамидальному классу гексагональных систем. Кроме того, лед может существовать в девяти других кристаллических полиморфных конфигурациях, а также в аморфном состоянии неопределенной структуры. Однако только обычная гексагональная структура льда стабильна при нормальных условиях (760 мм рт. ст., 0°С).
Надо отметить, что лед состоит не только из НОН-молекул, ориентированных так, что один атом водорода расположен на линии между каждой парой кислородных атомов. Чистый лед содержит также и ионы Н+ (Н3О+) и ОН-. Кроме того, кристаллы льда не являются совершенными, и имеющие место дефекты связаны с изменением положения протонов, сопровождаемым новой (нейтральной) ориентацией или изменениями
ионного характера (с образованием Н3О+ или ОН-). Наличием этих дефектов можно объяснить большую мобильность протона во льду, чем в воде, и небольшое увеличение электрической проводимости при замерзании воды.
Кроме того, каждая молекула воды может колебаться (предполагая, что она колеблется как единое целое) с амплитудой около 0,4А при —10°С. Следует также иметь в виду, что молекулы воды, которые, по-видимому, существуют в некоторых образующих щели пространствах льда, могут медленно диффундировать через решетку.
Вполне вероятно, что величина активности воды aw, (см. раздел 10.3) во льду имеет определенное отношение к скорости порчи пищевых продуктов и биологических веществ в условиях хранения при низких температурах.
На структуру кристаллов льда оказывают влияние растворенные вещества. Тем не менее, для большинства пищевых продуктов и биологических материалов наиболее характерна гексагональная структура. Она была обнаружена при замораживании модельных водных растворов сахарозы, глицерина, альбумина и других соединений.
470 :: 471 :: Содержание
471 :: 472 :: 473 :: 474 :: 475 :: Содержание