Гомогенные процессы в жидкой фазе

Из большого числа процессов, идущих в жидкой фазе, можно отнести к гомогенным процессы нейтрализации щелочи в технологии минеральных солей без образования твердой соли. Например, получение сульфата аммония при взаимодействии аммиачной воды и серной кислоты. По такому принципу протекают и некоторые обменные реакции, идущие в растворах

КСl +NаNО3 ↔ NаСl +КNО3

В жидкой фазе получают простые и смешанные эфиры из спиртов, так, например, этилсульфат разлагают спиртом

С2Н5ОSО2ОН + СН3ОН ↔С2Н5ОСН324,

происходит образование некоторых сложных эфиров, процессы гидролиза этилсерной кислоты и др.

В гомогенной среде идут и такие важные процессы, как получение адипиновой кислоты:

6Н11ОН + 8НNО3 ↔ 3С6Н10О4 +7Н2О +8ΝО,

синтез метилового спирта в присутствии серной кислоты.

Жидкофазная полимеризация в растворах применяется в производстве лаков и некоторых смол.

Гомогенные процессы, как правило, идут в кинетической области, т.е. общая скорость процесса определяется скоростью химической реакции, поэтому закономерности, установленные для реакций, применимы и к процессам, идущим в газовой и жидкой среде. С точки зрения кинетики, химические реакции можно классифицировать по молекулярности, т. е по числу молекул, принимающих одновременное участие в элементарном акте химического превращения, и по порядку реакции. Порядок реакции равен сумме показателей степеней при концентрациях реагирующих веществ в кинетическом уравнении реакции. Чаще всего порядок реакции не совпадает с ее молекулярностью. По молекулярности реакции подразделяются на моно -, би и тримолекулярные и по порядку - первого, второго и дробного порядка.

1. Одномолекулярные (мономолекулярным) реакции. К ним относятся:

– реакции внутримолекулярных перегруппировок А→Д, например, изомеризация, инверсия;

– реакции разложения А →Д +Д′.

В виде примера можно указать крекинг этана С2Н6 → С2Н42

2. Двумолекулярные (бимолекулярные), в которых элементарный акт осуществляется в результате встречи двух одноименных (2А) или разноименных (А+В) молекул исходных веществ. Бимолекулярные реакции в свою очередь можно подразделить на:

– реакции присоединения А +А →АА, А +В → АВ

и разложения 2А→Д +Д′

– реакции замещения или обмена А +ВВ′ → АВ + В′

– реакции двойного обмена АА′ +ВВ′ → АВ + А′В′

К бимолекулярным реакциям присоединения относятся присоединение атома или радикала к молекуле непредельного соединения и ассоциация насыщенных молекул. Например,

С2Н4 2 →С2Н6, Н22 →2НІ

К реакциям замещения или обмена принадлежит большое количество реакций атомов и радикалов с различными молекулами. Типичная реакция двойного обмена в растворе

КСl +NаNО3 →ΝаСl + КNО3

3.Трехмолекулярные, где встречаются и вступают в химическое взаимодействие три молекулы, могут быть реакции присоединения, обменного типа и реакции рекомбинации. 2FеСl3 +SnСl2 ↔2FеСl2 + SnСl4

Каждому из перечисленных типов реакций соответствует свое кинетическое уравнение, связывающее концентрации реагентов со временем.

А по порядку:первый,второй,дробный

90. Характеристика гетерогенных процессов. Процессы в системе Г/Ж, Ж/Т,Г/Т.

 

Гетерогенные химические процессы основаны на реакциях между реагентами, находящимися в разных фазах. Химические реакции являются одной из стадий гетерогенного процесса и протекают после перемещения реагентов к поверхности раздела фаз, а в ряде случаев и через межфазную поверхность. Большинство промышленных химико-технологических процессов относится к гетерогенным. Огромное разнообразие гетерогенных процессов затрудняет их классификацию. В соответствии с принятой классификацией некаталитические гетерогенные процессы делят по фазовому состоянию реагентов на процессы в системах Г-Ж, Ж-Т, Г-Т и т.д. Механизм гетерогенных процессов сложнее гомогенных, так как взаимодействию реагентов, находящихся в разных фазах, предшествует их доставка к поверхности раздела фаз и массообмен между фазами. Поэтому скорость гетерогенных некаталитических процессов, как правило, меньше скорости гомогенных процессов.

Многие гетерогенные процессы не связаны с химическими реакциями и основаны только на физико-химических явлениях. К таким процессам можно отнести испарение без изменения состава, конденсацию, перегонку, растворение, экстракцию и т.п.

Химические гетерогенные процессы включают в качестве этапа химические реакции, которые идут в одной из фаз после перемещения туда реагентов или на поверхности раздела фаз.

Важными технологическими показателями промышленных процессов служат равновесный выход продукта, определяемый равновесием при данных условиях и фактический выход продукта, определяемый как равновесием, так и скоростью процесса. Определение максимального равновесного выхода продукта гетерогенных процессов и возможностей его повышения основано на анализе равновесия в данной гетерогенной системе. На гетерогенные равновесия влияют температура, давление, концентрации реагентов и продуктов реакции. Равновесие гетерогенных процессов определяется константой равновесия химических реакций, законом распределения компонентов между фазами и правилом фаз. Равновесные концентрации компонентов в соприкасающихся фазах определяются законом распределения вещества, который устанавливает постоянное соотношение между равновесными концентрациями вещества в двух фазах системы при определенной температуре. Постоянство соотношений не нарушается при изменении начальной концентрации компонента или общего давления в системе. На законе распределения основаны такие промышленные процессы, как абсорбция газов жидкостями, десорбция газов, экстрагирование. Частные случаи закона распределения для равновесий в системе Ж - Г известны под названием законов Генри и Рауля. Равновесие фаз определяется правилом фаз. На основании правила фаз производят расчеты фазовых равновесий в различных гетерогенных системах и определяют количественный эффект изменения температуры, давления, концентрации реагентов.

Скорость гетерогенных процессов характеризуется величиной фактического выхода продукта или коэффициентом скорости процесса в кинетическом уравнении. Фактический выход продукта зависит от множества факторов как химических, влияющих на скорость химических реакций, так и физических и гидродинамических, влияющих на скорость массопередачи. Химическим факторами являются константы скоростей химических реакций. К физическим и гидродинамическим относятся величина межфазной поверхности, коэффициент диффузии и другие физические свойства реагентов и продуктов реакции, геометрические параметры аппаратов, факторы, влияющие на турбулентность системы.

Гетерогенные процессы, сопровождаемые химической реакцией могут быть трех типов:

1) когда химическая реакция протекает на поверхности раздела фаз, этот тип характерен для процессов с участием твердой фазы: Т-Ж, Т-Г, Г-Ж-Т и др.;

2) когда химические реакции протекают в объеме одной из фаз после переноса в нее вещества из другой, такие процессы наиболее распространены и могут идти с участием любых фаз в системах Г-Ж, Ж-Ж (несмешивающихся), Т-Ж, Г-Ж-Т и др.;

3) когда реакция происходит на поверхности вновь образующейся фазы, этот тип возможен для процессов взаимодействия твердых фаз.

Реакторы для проведения низкотемпературных некаталитических гетерогенных процессов не имеют характерных особенностей и аналогичны типовым аппаратам, в которых осуществляются физические процессы. Так, для процессов с участием газов и жидкостей (Г-Ж) применяется в основном колонная аппаратура: башни с насадкой или с разбрызгивающими устройствами, барботажные колонны, пенные аппараты. Процессы с участием жидких и твердых реагентов осуществляются в реакторах с различными перемешивающими устройствами: мешалками, пневматическим перемешиванием и др.

Процессы в системе газ- жидкость (Г-Ж)

Процессы, основанные на взаимодействии газообразных и жидких реагентов, широко используются в химической промышленности. К таким процессам относятся абсорбция и десорбция газов, испарение жидкостей, дистилляция и ректификация, пиролиз жидкостей с испарением продуктов пиролиза и т.п.

Абсорбцией называется поглощение газа (или компонента газа) жидкостью с образованием раствора. Абсорбция происходит при непосредственном соприкосновении жидкости и газа, причем газовые молекулы проникают в жидкость. В ряде случаев абсорбция сопровождается химическими реакциями в жидкой фазе. Такие процессы называются хемосорбционными. Абсорбционные и хемосорбционные процессы распространены и применяются в производстве серной кислоты, соляной, азотной, фосфорной кислот, аммиака и т.д.

Десорбция – процесс обратный абсорбции, заключается в выделении из жидкости растворенного в ней газа. В технике десорбция называется иногда отгонкой. При десорбции переход компонентов из раствора в газ происходит или вследствие нагревания жидкости, или в потоке инертного газа или водяного пара. Выделение компонента из жидкости в газ при нагревании происходит благодаря тому, что давление компонента над жидкостью становится выше, чем парциальное давление его в газе. Десорбция применяется в промышленности почти в таком же масштабе, как абсорбция, так как на практике абсорбцию часто комбинируют с десорбцией для получения в чистом виде поглощенного ранее газового компонента и регенерации поглотительного раствора. Десорбция применяется в производстве соды, в органическом синтезе, при концентрировании газов и т.п.

Испарение растворителя из растворов в химической технологии называется выпаркой. Этот же процесс называется концентрированием, например, концентрирование минеральных кислот и щелочей.

Конденсация – процесс, обратный испарению, это переход пара или газа в жидкость при охлаждении или сжатии газа. Конденсацию газовых компонентов из газовой смеси при умеренном или глубоком охлаждении в технологии называют сжижением газов. Процессы конденсации паров и газов применяются при химической переработке твердого топлива, в производстве фосфора, спиртов, аммиака, при освобождении газов от паров воды и т.п.

Перегонка жидких смесей – дистилляция и ректификации более сложные процессы и представляют собой различные сочетания испарения с конденсацией.

Процессы пиролиза часто сочетаются с ректификацией продуктов. Как правило, пиролиз и крекинг жидкостей происходит с участием не только жидкой и газообразной, но также и твердой фазы, так как наряду с жидкими и газообразными продуктами образуется сажа или кокс.

Полимеризация в газе с образованием относительно низкомолекулярных жидких полимеров применяется ограниченно. Так, например, получение жидких полупродуктов органического синтеза частичной (оборванной) полимеризацией газообразных олефинов. Полученные таким образом полупродукты применяются для производства синтетических смол и т.п. применяется ограничено

Равновесие в системе Ж-Г характеризуется правилом фаз, указывающим необходимое условия существования данного количества фаз, т.е. число параметров, характеризующих равновесие, законом распределения компонента между фазами и константой равновесия химических реакций. Для перечисленных процессов характерны, главным образом, двухфазные системы, содержащие один, два и более компонентов. Фазовое равновесие для этих систем изображается в виде диаграмм состав- свойство, чаще всего состав – температура кипения. Для хемосорбционных процессов, когда, например, растворенный газ реагирует с жидкостью, равновесие характеризуется при помощи константы равновесия химической реакции.

Расчеты к.п.д. связаны с равновесными соотношениями, хотя эта величина определяется в основном кинетикой процесса, так как фактическое количество поглощаемого или десорбируемого компонента зависит от скорости массопередачи. Абсорбционное равновесие можно сдвинуть в сторону увеличения растворимости газа понижением температуры, повышением концентрации поглощаемого компонента в газе или понижением давления. Поскольку десорбция является процессом обратным абсорбции, то и приемы сдвига десорбционного равновесия противоположны. Примером сдвига абсорбционного и десорбционного равновесия в сторону наибольшего выхода продукта (поглощенного или десорбированного газа) может служить очистка азотоводородной смеси от газообразных примесей перед синтезом аммиака.

При исследовании и описании абсорбционно-десорбционных процессов принято делить газы на хорошо, средне и плохо растворимые. Эта классификация учитывает скорость растворения их в жидкостях и концентрацию насыщенных растворов. К хорошо растворимым газам относятся быстро взаимодействующие с жидкостью, образующие с ней соединения, быстро диффундирующие внутрь жидкости от поверхности раздела. При абсорбции среднерастворимых газов скорости диффузии в газовой и жидкой фазах и химических реакций сопоставимы. Скорость абсорбции плохо растворимых газов определяется скоростью физико-химического взаимодействия с жидкостью или скоростью диффузии полученного соединения в жидкой фазе. В этом случае медленным актом является отвод продукта из зоны взаимодействия.

Методы интенсификации процессов абсорбции и десорбции зависят в частности от того, в какой области, диффузионной или кинетической, идет процесс. Если абсорбция идет в кинетической области, т.е. сопровождается химическими реакциями, скорость которых меньше скоростей диффузии, то основными методами интенсификации являются обычные приемы увеличения скорости химических реакций: повышение температуры, концентрации реагентов, давления, а также применение катализаторов.

Для ускорения абсорбционных процессов, идущих в диффузионной и переходной областях, применяют иные методы в соответствии с иным характером движущей силы и коэффициента скорости процесса. В этом случае основными методами интенсификации являются:

1) максимальное развитие поверхности контакта фаз;

2) турбулизация и интенсивное перемешивание потоков газа и жидкости для увеличения коэффициента массопередачи;

3) понижение температуры для уменьшения парциального давления;

4) повышение начальной концентрации поглощаемого компонента в газе или увеличение общего давления.

Данные приемы широко применяются на практике при поглощении газов жидкостями. Так, в производстве аммиака применяют высокие давления в процессе абсорбции примесей СО2 и СО из азотоводородной смеси, потому что в этом случае процесс очистки газа совмещается с его компримированием до высоких давлений, требуемых для синтеза аммиака.

Наиболее доступным приемом ускорения абсорбции является применение интенсивной аппаратуры, обеспечивающей высокое развитие поверхности жидкой фазы, турбулизацию газовой и хорошее перемешивание реагентов. Для этого применяют насадочные колонны, которые работают при интенсивном режиме, различные типы тарельчатых барботажных аппаратов, пенные аппараты и т.п. Интенсивность процессов в этих аппаратах дополнительно повышают, увеличивая скорости потоков реагирующих фаз.

Наши рекомендации