Дыхательный контроль. Разобщение дыхания (окисления) и фосфорилирования (свободное окисление).
Окисление субстратов и фосфорилирование АДФ в митохондриях прочно сопряжены. Скорость использования АТФ регулирует скорость потока электронов в ЦПЭ. Если АТФ не используется и его концентрация в клетках возрастает, то прекращается и поток электронов к кислороду. С другой стороны, расход АТФ и превращение его в АДФ увеличивает окисление субстратов и поглощение кислорода.
Зависимость интенсивности дыхания митохондрий от концентрации АДФ называют дыхательным контролем.
Некоторые химические вещества (протонофоры) могут переносить протоны и другие ионы (ионофоры) из мембранного пространста через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это называют разобщением дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается, что приводит к возрастанию скорости окисления НАДН и ФАДН2, возрастает и количество поглощенного кислорода, но энергия выделяется в виде тепла, и коэффициент Р/О резко снижается (свободное окисление).
Разобщители – липофильные вещества, легко проходящие через липидный слой мембраны:
- 2,4-динитрофенол,
- дикумарол (антивитамин вит. К);
- билирубин (продукт распада гема);
- тироксин (гормон щитовидной железы).
Все эти вещества проявляют разобщающее действие только при их высокой концентрации.
Образование токсичных форм кислорода в ЦПЭ и обезвреживание перекиси водорода ферментом пероксидазой.
В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода.
В невозбужденном состоянии кислород нетоксичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О2 содержит 2 неспаренных электрона с параллельными спинами, которые не могут образовывать термодинамическую стабильную пару и располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон.
Полное восстановление О2 происходит в результате 4 одноэлектронных переходов:
ē
О2 О2ˉ - супероксид
+ē , Н+
О2- Н2О2 - пероксид
+ē , Н+ +ē , Н+
Н2О2 Н2О + ОН- 2Н2О
гидроксильный радикал
Супероксид, пероксид и гидроксильный радикал- активные окислители, представляют серьезную опасность для многих структурных компонентов клетки.
Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции. Активные формы О2 вызывают окисление липидов, белков мембраны клеток, ДНК, РНК. Все это приводит к разрушению клеток.
Большая часть активных форм О2 образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании QН2– дегидрогеназного комплекса. Это происходит в результате неферментативного переноса («утечки») электронов с QН2 на кислород.
Супероксид может образовываться:
1. При спонтанном окислении гемоглобина. В норме гемоглобин обратимо связывает кислород в оксигемоглобин, однако оксигемоглобин превращается в метгемоглобин (Fе3+) и супероксид О2ˉ.
2. Вирус гриппа взаимодействует с нейтрофилами легочной ткани и образует О2ˉ, который поддерживает воспаление, деструктивные процессы.
3. Нейтрофилы, в избытке накапливающиеся в воспаленных суставах, также образуют О2ˉ, которые участвуют в развитии артритов.
В организме существуют защитные механизмы:
- гемсодержащие ферменты: пероксидаза, которая расщепляет Н2О2:
пероксидаза
Н2О2 Н2О + О