Тепловые эффекты физико-химических процессов
Раздел химической термодинамики, изучающий тепловые явления, сопровождающие различные физико-химические процессы, например тепловые эффекты химических реакций, фазовых переходов, процессов растворения, называется термохимией.
Внутренняя энергия
При анализе работы тепловой машины Джоуль (Joule), Гельмгольц (Helmholtz) и др. установили, что теплота, подводимая к системе из окружающей среды, расходуется на совершение механической работы и на изменение некоторого свойства системы, которое получило название внутренней энергии.
Внутренняя энергия (U) – это сумма всех видов энергии, которыми обладают отдельные частицы системы, за исключением кинетической и потенциальной энергии системы в целом и энергии, связанной с внешним электромагнитным и гравитационным полем.
Для систем, рассматриваемых в химической термодинамике, такими видами энергии могут быть кинетическая и потенциальная энергия атомов и молекул, энергия электронов в атомах, внутриядерная энергия и другие виды энергии. На сегодняшний день неизвестны и вряд ли когда-либо будут известны все виды энергии, заключенные в веществе, поскольку материя бесконечна и бесконечны формы ее движения. Но это не создает никаких проблем для практического использования понятия «внутренняя энергия». При расчете термодинамического процесса определяющим является не абсолютное значение величины внутренней энергии системы в начальном и конечном состояниях, а только ее изменение DU. Его можно определять, приняв за точку отсчета любое состояние термодинамической системы – так называемое стандартное состояние.
В химических процессах изменяются только две составляющие внутренней энергии:
1) химическая – энергия химических связей, включая энергию межмолекулярного взаимодействия. Изменение химической энергии происходит при протекании химической реакции в результате разрыва и образования химических связей в молекулах исходных веществ и продуктов реакции;
2) тепловая – кинетическая энергия движения атомов и молекул. Изменение тепловой энергии определяется изменением температуры системы как параметра кинетической энергии атомов и молекул.
Внутренняя энергия является функцией состояния системы, т.е. ее изменение в каком-либо процессе зависит только от начального и конечного состояний и не зависит от пути перехода.
Независимость изменения какого-нибудь свойства системы (X) от пути протекания процесса означает, что бесконечно малое приращение является полным дифференциалом (dX). Тогда элементарное количество внутренней энергии (бесконечно малое изменение) является полным дифференциалом (dU): . Если система совершает круговой процесс, то полное изменение внутренней энергии равно нулю: .
Аналогичным свойством обладают и все остальные функции состояния системы. Величина DU (dU) считается положительной, если внутренняя энергия системы в ходе процесса увеличивается, и, соответственно, отрицательной, если уменьшается. Теплота (Q) и работа (W) в общем случае не являются функциями состояния, поскольку их изменение при переходе системы из одного состояния равновесия в другое зависит от пути протекания процесса. Соответственно элементарное количество (бесконечно малые изменения) теплоты (dQ) и работы (dW) в общем случае не являются полными дифференциалами. В равновесных процессах теплота и работа приобретают свойства функций состояния и их бесконечно малые изменения – свойства полных дифференциалов.
Единицей измерения внутренней энергии является [Дж], [кДж]. Внутренняя энергия термодинамической системы зависит от природы вещества, его количества (экстенсивная величина) и параметров состояния системы. Поэтому часто ее относят к одному молю (или килограмму) вещества, измеряя в [кДж/моль], [кДж/кг]. В литературе может встречаться внесистемная единица тепловой энергии – термохимическая калория (калтх): 1 калтх = 4,184 Дж.
Величину внутренней энергии системы, находящейся в состоянии равновесия, характеризует температура, поскольку она является параметром средней кинетической энергии молекул и атомов. Более высокой температурой обладают тела, у которых средняя кинетическая энергия молекул выше. Для идеального газа внутренняя энергия 1 моля газа зависит только от температуры.
Температура системы измеряется термометрами, действие которых основано на зависимости какого-либо физического свойства тела (объем, электрическое сопротивление и т.п.) от температуры с учетом принципа транзитивности теплового равновесия: если каждая из систем А и В находится в тепловом равновесии с системой С, то справедливо утверждение о тепловом равновесии А и В друг с другом. Все системы, находящиеся в тепловом равновесии друг с другом, будут обладать общим свойством – их температура будет одной и той же.
В термодинамике пользуются термодинамической шкалой температур. Абсолютная температура тела Т (температура по термодинамической шкале) всегда положительна. В системе СИ единицей измерения температуры является градус Кельвина (К).
Первое начало термодинамики
Джеймс Джоуль (Joule) в середине XIX века экспериментально обосновал закон сохранения энергии и определил механический эквивалент теплоты. На основании его работ этот закон был сформулирован в удобной для термодинамики форме и получил название"первое начало термодинамики": теплота (DQ), сообщенная термодинамической системе, идет на увеличение внутренней энергии (DU) системы и на совершение системой работы (DW).
Математическим выражением первого начала термодинамики является уравнение DQ =DU + DW. Для бесконечно малых изменений величин соответственно dQ = dU + dW.
Часто при протекании термодинамических процессов единственной работой системы является работа расширения, т. е. работа против внешнего давления (р): DW= р×DV. Тогда DQ =DU + р×DV , dQ = dU + р×dV.
Рассмотрим применение первого начала термодинамики к процессам, протекающим при постоянстве одного из параметров.
1. Изотермический процесс (Т=const). Энергия, подведенная к системе в виде теплоты, идет только на работу расширения системы: dQT = p×dV,DQT = p×DV.
2. Изохорный процесс (V=const, тогда DV=0). Система работы не совершает, поэтому все подведенное к системе тепло идет на увеличение ее внутренней энергии: dQV = dU,DQV =DU. Поскольку в данном случае DQV >0, так как система поглощает теплоту из окружающей среды, то и DU >0.
3. Изобарный процесс (p=const). Энергия, подведенная к системе в виде теплоты, идет на приращение внутренней энергии (DU >0) и на работу расширения системы (p×DV): dQр = dU + p×dV,DQр =DU + p×DV,
dQp = dU + p×dV = dU+ d(p×V) = d(U+ p×V).
Отметим, что в изотермичеческом, изохорном и изобарном процессах бесконечно малые изменения теплоты приобретают свойство полного дифференциала, т. е. теплота приобретает свойства функции состояния: U+ p×V может быть заменено функцией Н, H = U+ p×V, тогда, очевидно, dQp = dH.
Эта термодинамическая функция (H = U+ p×V) называется энтальпией (от греч. enthalpo — нагреваю).Она является функцией состояния системы и измеряется, как и внутренняя энергия, в [Дж], [кДж]. Она также зависит от количества вещества (экстенсивная величина), поэтому ее относят к одному молю (или килограмму) вещества [кДж/моль], [кДж/кг].
Физический смысл энтальпии явствует из ее определения (H = U+ p×V). Если взять какую-то систему, которая занимает объем V и находится под давлением p, то полная энергия этой системы будет суммой двух энергий: внутренней U и энергии, связанной с взаимодействием системы со средой (с энергией «стенки», отделяющей систему от окружающей среды), которая и обеспечивает давление p. Эта энергия будет пропорциональна p и будет тем больше, чем больше объем системы, т.е. пропорциональна V. Всю энергию системы можно, в принципе, превратить в тепло. Таким образом, система как бы содержит в себе определенное количество энергии, которую можно переводить в тепло. Таким образом энтальпия есть теплосодержание системы.
Энтальпию удобно использовать при рассмотрении энергетических эффектов в изобарных процессах. Поскольку изменение энтальпии характеризует количество теплоты, отданное или полученное системой, то оно соответствует тепловому эффекту реакции, протекающей при постоянном давлении.