Уморительно точные инструменты
Вспомните самого противного преподавателя естественных дисциплин, который когда-либо у вас был. Того самого, который безжалостно снижал оценку, если шестой знак после запятой в вашем ответе был округлен неправильно, у которого на футболке красовалась таблица Менделеева, который поправлял каждого, кто по недомыслию говорил «вес» вместо «масса». Еще он заставлял всех надевать защитные лабораторные очки, даже если требовалось размешать сахар в стакане. А теперь представьте человека, который даже такому учителю показался бы невыносимо дотошным. Люди именно такого сорта работают в бюро стандартов и метрологии.
В большинстве стран есть подобные учреждения, перед сотрудниками которых стоит задача измерить решительно все – от того, какова точная длительность секунды, до того, при каком содержании ртути в говяжьей печени эту печень допускается употреблять в пищу (она очень низкая, если верить американскому Национальному институту стандартов и технологий). Для ученых, работающих в бюро по стандартизации, измерения – не просто практическая деятельность, обеспечивающая существование науки, они практически приравнивают науку к измерениям. Прогресс в любых научных дисциплинах, от пост-эйнштейновской космологии до астробиологических поисков внеземной жизни, зависит от нашего умения производить все более точные измерения, опираясь на все более ничтожные крупицы информации.
В центре расположен международный эталон килограмма – цилиндр диаметром 39 мм, состоящий из платины и иридия. Эталон килограмма постоянно находится под тремя стеклянными колпаками, сложенными по принципу матрешки. В ячейке, где находится эталон килограмма, тщательно контролируется температура и влажность. Вокруг находится шесть его официальных копий, каждая под двумя стеклянными колпаками. Копии изготовлены с разрешения МБВМ, которое обладает официальными авторскими правами на килограмм
По причинам исторического характера (многие великие деятели французского Просвещения были страстными метрологами) Международное бюро мер и весов находится поблизости от Парижа. Оно задает стандарты для всех остальных бюро стандартов в мире, гарантируя, что все «франшизы» соответствуют эталонам. Одно из самых исключительных достижений этого бюро – создание эталона килограмма. Эталон килограмма представляет собой цилиндр, на 90 процентов состоящий из платины, имеющий высоту 39 миллиметров. Масса этого цилиндра по определению составляет 1,000000000… (еще сколько угодно нулей) килограмм.
Поскольку эталон килограмма – это физическое тело (которое можно повредить), а также потому что эталон должен оставаться постоянным, МБМВ должно гарантировать, что это цилиндр никогда не будет поцарапан, на него не сядет ни пылинки, не исчезнет (бюро на это рассчитывает!) ни единый атом! Если произойдет что-либо подобное, то масса эталона может взлететь до 1,0000000… 1 кг или, наоборот, рухнуть до 0,9999999…9 кг. Сама возможность такого происшествия не дает спокойно спать сотрудникам бюро стандартов. Поэтому они, как няньки, постоянно отслеживают температуру и давление в ячейке, чтобы исключить малейшее расширение или сжатие – любое возмущение, которое могло бы потревожить атомы. Поверх эталона установлено три стеклянных колпака, которые должны предотвратить конденсацию влаги на цилиндре и образование тончайшей водяной пленки на его поверхности. Килограмм изготовлен из металлов с очень высокой плотностью, – платины и иридия – чтобы минимизировать поверхностную площадь эталона, соприкасающуюся с тем грязным воздухом, которым мы дышим. Кроме того, платина превосходно проводит электричество, поэтому на эталоне почти не накапливается «паразитическое» статическое электричество, которое могло бы притянуть к цилиндру лишние залетные атомы.
Наконец, исключительная твердость платины сводит к минимуму вероятность возникновения случайных царапин в тех редких ситуациях, когда люди все-таки прикасаются руками к эталону килограмма. В других странах нужны собственные 1,00000000… -килограммовые цилиндры, чтобы не приходилось летать в Париж всякий раз, когда требуется измерить точный вес какого-либо предмета. Поскольку эталонкилограмма находится именно во Франции, все национальные эталоны должны сравниваться с ним. Так, США обладают цилиндром К20 (то есть двадцатой официальной копией), который хранится в государственном учреждении в штате Мэриленд. По словам Зейны Джаббур, руководительницы отдела по работе с массой и силой Национального института стандартов и технологий, с 2000 года этот образец калибровался лишь однажды, причем это было сделано в рамках другой калибровки. Но калибровка – это многомесячный процесс, а новые требования по соблюдению безопасности, принятые в 2001 году, превратили доставку К20 в Париж (на самолете) в изрядную проблему. «На протяжении всего полета нам приходилось носить наш эталон на руках, – вспоминает Джаббур, – можете себе представить, как сложно пронести в аэропорту металлический слиток через все службы безопасности, постоянно внушая сотрудникам, что прикасаться к эталону нельзя». Ведь даже когда приходилось открывать в «пыльном аэропорту» специальный кейс, в котором хранится национальный эталон килограмма, это могло повредить цилиндр, «ну а если бы кто-нибудь до него дотронулся, то о калибровке можно забыть».
Как правило, МБВМ использует для калибровки национальных эталонов одну из шести официальных копий килограмма (каждая из них хранится под двумя стеклянными колпаками). Но официальные копии также должны быть сверены со стандартом. Поэтому раз в несколько лет ученые достают килограмм из ячейки. (Разумеется, это делается при помощи щипцов, специалисты надевают латексные перчатки. Конечно, дело не в том, что они боятся оставить отпечатки, а в том, что более распространенные перчатки, покрытые тальком, могут оставить пыль. Наконец, эталон нельзя слишком долго держать в руках, поскольку из-за этого он может нагреться – и вся работа пойдет насмарку.) Таким образом, эталоны калибровки тоже калибруются[160]. В ходе всех калибровок, выполненных в 1990-е годы, ученые с тревогой заметили, что эталон килограмма потерял за последние несколько десятилетий почти целый вес отпечатка пальца (!), то есть терял до половины микрограмма в год. Это странное явление пока не удается объяснить, даже с поправкой на то, что при прикосновении к эталону от него могут отлетать какие-то единичные атомы.
Когда стало очевидно, что поддерживать массу эталона килограмма неизменной не удается – это действительно так, – вновь начались дискуссии о том, что этот цилиндр пора вывести из употребления. На самом деле, это голубая мечта всех ученых, буквально зациклившихся на работе с цилиндром. Наука во многом обязана своим прогрессом, достигнутым с 1600 года до наших дней, именно тому, что ученые по мере возможности старались объективно смотреть на окружающий мир, не поддаваясь принципу «человек – мера всех вещей». Этот прием именуется принципом Коперника или, менее образно, принципом заурядности. Килограмм является одной из семи основных единиц измерения, которые пронизывают все научные дисциплины. В настоящее время уже неприемлемо, чтобы эталоном столь важной единицы был артефакт, изготовленный человеком, особенно если такой эталон может таинственным образом уменьшаться.
Английское бюро национальных стандартов выступило с амбициозным заявлением: каждая универсальная единица должна быть такой, чтобы ученый мог переслать по электронной почте определение этой единицы коллеге на другой континент, а коллега мог легко сам получить ее эталон, просто воспользовавшись параметрами, указанными в письме. Эталон килограмма не соответствует этому требованию, и никому пока не удалось определить эту единицу точнее, чем при помощи невысокого блестящего кованого цилиндра, хранящегося в Париже. Конечно, предлагались и другие варианты выведения эталона килограмма, но они практически неприменимы на практике, так как требуют либо подсчитывать триллионы атомов, либо выполнять измерения, слишком точные даже для самых современных инструментов. Невозможность решения этой проблемы с килограммом – так, чтобы ни утяжелить, ни облегчить эталон ни на самую малость, – вызывает все большее беспокойство и раздражение в международных масштабах, как минимум среди дотошных метрологов.
Проблема стала тем более острой, когда килограмм остался единственной единицей измерения, чей эталон имеет искусственное происхождение. На протяжении большей части XX века в Париже хранился эталон метра – платиновый стержень, имевший длину 1,000000000… метра. Но в 1960 году ученые дали новое определение метра, обозначив эту единицу как 1 650 763,73 длины волны оранжевого света, проходящего через атом криптона-86. Это расстояние практически идентично длине старого доброго стержня, но теперь платиновый эталон метра уже устарел, поскольку длина волны оранжевого света в любом атоме криптона в вакууме всегда остается одинаковой. Такое определение можно переслать по электронной почте. С тех пор ученые-метрологи предложили еще одно определение метра: это расстояние, которое свет проходит в вакууме за 1/299 792 458-ю долю секунды.
Аналогично, официальным определением секунды считалось время, за которое Земля преодолевает путь в 1/31 556 992 околосолнечной орбиты (это 365,2425 суток). Но нашлись некоторые неудобные факты, из-за которых пришлось отказаться от этого стандарта. Длина года – не календарного, а астрономического – разная при каждом обороте Земли вокруг Солнца. Виной тому приливы, которые постепенно искривляют земную орбиту и замедляют планету. Чтобы скорректировать эту неточность, метрологи раз в три года добавляют к календарю корректировочную секунду. Это происходит в полночь 31 декабря, когда ее обычно никто не замечает. Но корректировочные секунды – это некрасивое, временное решение. Специалисты американского бюро стандартов решили, что не стоит привязывать единицу времени, претендующую на универсальность, к периоду обращения крохотной планетки вокруг заурядной звезды. Поэтому были изобретены атомные часы, в основе работы которых лежит радиоактивный распад цезия.
Механизм работы атомных часов связан с тем самым процессом стремительного подъема и спуска возбужденных электронов в атоме, который уже обсуждался выше. Но атомные часы также используют и более незаметные движения, укладывающиеся в «тонкую структуру» электрона. Если обычный прыжок электрона напоминает изменение голоса вокалиста, который пел ноту «соль» и сразу перешел на ноту «соль» другой октавы, то движение в рамках тонкой структуры напоминает изменение высоты с «соль» до «соль-диез». Проявления тонкой структуры наиболее заметны в магнитном поле и обычно обусловлены факторами, которые можно смело игнорировать, если только вы не изучаете исключительно сложный университетский курс физики. Речь идет о магнитных взаимодействиях между протонами и электронами либо о поправках, которые делаются с учетом эйнштейновской теории относительности. С учетом всех этих мельчайших поправок[161]электрон оказывается после прыжка чуть ниже (соль-бемоль) или чуть выше (соль-диез), чем ожидалось.
Электрон «решает», какой прыжок сделать, на основании присущего ему спина. Поэтому электрон не может сразу перескочить с «диеза» на «бемоль». Он обязательно прыгает либо вверх, либо вниз. В атомных часах, напоминающих длинные и тонкие трубки пневмопочты, магнит вытесняет все атомы цезия, внешние электроны которого прыгнули на уровень, соответствующий, скажем, «соль-бемолю». В трубке остаются лишь такие атомы, электроны которых соответствуют «соль-диезу». Эти атомы собираются в специальную камеру, где возбуждаются под действием интенсивного микроволнового излучения. В результате электроны «подскакивают» (то есть поднимаются вверх и падают вниз), излучая при этом фотоны. Каждый прыжок очень упругий, и на него всегда уходит один и тот же (исключительно краткий) период времени. Поэтому атомные часы могут измерять время, просто подсчитывая фотоны. На самом деле, даже не важно, какие атомы вы будете вытеснять – соль-диезные или соль-бемольные, но вы обязательно должны их разделить, поскольку прыжки на разные уровни требуют разного количества времени. Для метрологов такая неточность неприемлема.
Цезий оказался очень удобным материалом для «заводной пружины» в атомных часах, поскольку на внешнем уровне атома этого элемента находится всего один электрон, рядом с ним нет других электронов, которые могли бы его прикрывать. Громоздкие и тяжелые атомы цезия – удобные мишени для мазера, который заставляет их вибрировать. Однако даже в крупном цезии внешний электрон отличается прыткостью. Он успевает совершить за секунду не десятки, не тысячи, а 9 192 631 770 колебаний. Ученые остановились на этой неуклюжей величине, а не, скажем, на 9 192 631 769 или 9 192 631 771, так как именно в 9 192 631 770 колебаний была оценена точная длительность секунды еще в 1955 году, когда были сконструированы первые цезиевые атомные часы. Как бы то ни было, в настоящее время величина 9 192 631 770 считается фиксированной. Единица времени стала первым эталоном, точное значение которого стало возможно переслать по электронной почте. Именно после получения такого универсального определения секунды человечество уже в 1960 году отказалось от платинового эталона метра.
В 1960-е годы научное сообщество признало цезиевый стандарт в качестве механизма универсального отсчета времени.
Хотя этот стандарт и оказался полезен для науки, значительно повысив точность измерения времени, человечество тем не менее что-то потеряло, перейдя на него. Ведь со времен цивилизаций Древнего Египта и Вавилона для измерения времени и записи важнейших событий люди ориентировались на движение звезд и смену времен года. Цезий разорвал эту нить, связывавшую нас с небесами, подобно тому как уличные фонари в больших городах затмили созвездия. Цезий – отличный элемент, но он лишен мифического очарования, присущего Луне или Солнцу. Кроме того, даже основной аргумент в пользу перехода на цезий – универсальность, с которой электроны в атоме цезия вибрируют в любом уголке Вселенной, – также может оказаться не столь бесспорным.
* * *
Любовь математика к переменным сравнима только с любовью естествоиспытателя к константам. Заряд электрона, сила гравитации, скорость света – независимо от эксперимента и окружения, в котором он проводится, никогда не изменяются. Если бы они изменялись, ученым пришлось бы забыть о точности, которая отличает естественные науки от гуманитарных, например от экономики, в рамках которых человеческие причуды, а порой откровенный идиотизм не позволяют формулировать универсальные законы.
Еще более привлекают ученых фундаментальные константы – самые абстрактные и универсальные. Разумеется, численное значение размера или скорости частицы изменится, если мы вдруг решим, что метры должны стать длиннее, а килограммы – легче (хм). Но фундаментальные константы не зависят от измерений. Подобно л, они являются чистыми неизменными числами и, опять же, подобно л, фигурируют в самых разных контекстах. Кажется, что у таких феноменов должно быть предельно логичное объяснение, но найти его так и не удается.
Самая известная безразмерная константа – это постоянная тонкой структуры, описывающая тонкое расщепление электронов. Она определяет, как отрицательно заряженные электроны связываются с положительно заряженным ядром. Кроме того, от нее зависят силы некоторых ядерных процессов. На самом деле, если бы постоянная тонкой структуры (далее я буду именовать ее «альфа», так ее предпочитают называть ученые) сразу после Большого взрыва оказалась чуть меньше, то ядерный синтез в недрах звезд никогда не разогрел бы их настолько, чтобы там мог образоваться углерод. Напротив, если бы значение альфа было чуть выше, то все атомы углерода распались бы давным-давно, задолго до того, как оказались бы в наших организмах. Ученые благодарны природе за то, что значение альфа-константы оказалось в крохотном промежутке между этими атомными Сциллой и Харибдой, однако этот факт очень их озадачивает, поскольку никому не удается объяснить столь поразительное совпадение. Даже знаменитый физик Ричард Фейнман, убежденный и неисправимый атеист, однажды выразился о постоянной тонкой структуры так: «Любой хороший физик-теоретик записывает ее на стене и думает над ее значением… одной из величайших проклятых тайн физики: магическое число, которое приходит к нам без объяснения. Можно сказать, что это число писала “рука Бога” и мы не знаем, что двигало его карандашом».
Люди постоянно пытались расшифровать эти научные письмена, напоминающие таинственное «мене, мене, текел, упарсин»[162]. Английский астроном Артур Эддингтон, который в 1919 году во время солнечного затмения первым экспериментально подтвердил эйнштейновскую теорию относительности, очень интересовался альфа-константой. Следует упомянуть, что у Эддингтона была склонность, более того – талант к занятиям нумерологией[163]. По состоянию на начало XX века значение альфа-константы считалось равным 1/136, и Эддингтон принялся составлять «доказательства» того, что альфа равна именно 1/136 – отчасти потому, что усматривал математическую связь между числами 136 и 666. Один коллега-ученый даже саркастически предложил переписать Откровение Иоанна Богослова с учетом этого «открытия». Более поздние измерения показали, что значение альфа ближе к 1/137, но Эддингтон как ни в чем не бывало добавил в свою формулу единицу и продолжал делать вид, что его нумерологический замок из песка отнюдь не рассыпался (из-за этого он получил прозвище сэр Артур Плюс Один). Позже один знакомый застал Эддингтона в гардеробе в Стокгольме и с огорчением наблюдал, как сэр Эддингтон требовал, чтобы его шляпу повесили на крючок номер 137.
В настоящее время считается, что значение альфа равно примерно 1/137,0359. Как бы то ни было, именно благодаря этой константе на свете есть периодическая система элементов. Эта константа обеспечивает не только существование атомов, но и позволяет им достаточно активно взаимодействовать, образуя химические соединения. Дело в том, что электроны никогда не блуждают слишком свободно и в то же время не находятся в совершенно неразрывной связи со своими атомами. Такой идеальный баланс наталкивает многих ученых на вывод о том, что столь точная константа не могла возникнуть во Вселенной по чистой случайности. Богословы выражаются более недвусмысленно и заявляют, что существование альфа-константы доказывает факт творения – якобы Создатель «запрограммировал Вселенную» таким образом, чтобы в ней могли существовать молекулы, а впоследствии развилась жизнь. Именно поэтому в 1976 году внимание всего научного мира оказалось приковано к личности советского ученого Александра Шляхтера (в настоящее время Шляхтер – уже американский ученый). Шляхтер исследовал одно удивительное место в Африке под названием Окло и заявил, что альфа, фундаментальная и неизменная константа Вселенной, в Окло увеличивается.
Окло – это чудо галактического масштаба: единственный естественный ядерный реактор,известный науке. Он зародился около 1,7 миллиарда лет назад, и, когда в 1972 году французские шахтеры обнаружили в Габоне это место, в науке поднялся настоящий переполох. Некоторые ученые утверждали, что Окло просто не может существовать, тогда как отдельные маргинальные околонаучные группы видели в Окло «доказательство» в пользу эксцентричных надуманных теорий. В частности, они рассуждали о существовании в Африке древних высокоразвитых цивилизаций либо о том, что в незапамятные времена здесь разбился инопланетный космический корабль на ядерном топливе. Физики-ядерщики определили, что ядерный реактор в Окло образовался из совершенно естественных компонентов: урана, воды и синезеленых водорослей (тины). Честно. Оказалось, что мелкие водоросли, пышно растущие в реке близ Окло, в процессе фотосинтеза производят огромное количество кислорода. Из-за этого вода в реке становится настолько кислой, что проникает сквозь речное дно и вымывает из речного русла соединения урана. В те времена, когда образовался Окло, в природном уране содержалось значительно больше редкого изотопа уран-235, который нужен для запуска реакции в атомной бомбе – порядка 3 % против нынешних 0,7 %. В те времена вода здесь уже текла, подземные водоросли фильтровали ее, и в одном месте концентрировались все более крупные запасы урана. В какой-то момент они достигли критической массы.
Критическая масса – важный, но не единственный фактор для запуска ядерной реакции. Чтобы началась цепная реакция, ядра урана должны не просто бомбардироваться нейтронами, но и поглощать их. При ядерных реакциях, связанных с распадом чистого урана, атомы выстреливают «быстрые» нейтроны, которые бьют по окружающим атомам, как камень, скачущий по
поверхности воды. Обычно в природе такие быстрые нейтроны не оказывают заметного эффекта, «пропадают впустую». Естественный реактор в Окло смог образоваться лишь по той причине, что текущая вода довольно сильно замедляла нейтроны, и атомы урана успевали их поглощать. Без воды реакция так бы и не началась.
Но и это еще не все. Как известно, при ядерном распаде выделяется тепло. И огромный ядерный кратер в Африке до сих пор не образовался лишь потому, что, когда уран разогревался, вода начинала выкипать. Без воды нейтроны ускорялись, поглощать их становилось сложнее, и реакция останавливалась. Когда уран остывал, вновь просачивалось достаточное количество воды, нейтроны снова начинали замедляться, и реакция возобновлялась. Возник своеобразный саморегулирующийся ядерный гейзер. Таким образом, реактор действовал в общей сложности около 150 тысяч лет, за это время он переработал около 6,5 тонны урановой руды в шестнадцати небольших месторождениях в районе Окло. Каждая ядерная реакция в Окло продолжается примерно 150 минут, затем на такое же время реактор затихает.
Как же ученым удалось воссоздать эту историю, произошедшую 1,7 миллиарда лет назад? При помощи элементов. Химические элементы основательно перемешаны в земной коре, поэтому концентрация отдельных изотопов элемента повсюду должна быть примерно одинаковой. В Окло содержание урана-235 оказалось на 0,003-0,3 % ниже нормы – огромная разница. Но как выяснилось, что Окло имеет естественное происхождение, а не является остатком древнего склада контрабанды для коварных террористов? Дело в том, что здесь в изобилии встречаются и практически бесполезные элементы – например, неодим. Здешний неодим в основном состоит из трех изотопов с четной атомной массой – 142, 144 и 146. Урановые ядерные реакторы производят гораздо больше изотопов неодима с нечетной атомной массой. Действительно, когда ученые проанализировали концентрацию изотопов неодима в Окло и вычли из полученных результатов изотопы естественного происхождения, доля «нечетных» атомов неодима здесь оказалась примерно такой, как и в искусственном ядерном реакторе. Поразительно.
Тем не менее, хотя уровень концентрации неодима совпал с ожидаемым, концентрация других элементов оказалась странной. Когда в 1976 году Шляхтер сравнил ядерные отходы Окло с отходами современных реакторов, оказалось, что в Окло содержится слишком мало некоторых изотопов самария. Само по себе это было не так удивительно. Но, опять же, ядерные реакции – это процессы, воспроизводимые с поразительной точностью. Не может быть, чтобы определенный элемент, например самарий, просто не образовался. Недостаток самария в породе подсказал Шляхтеру, что во времена возникновения Окло существовал еще какой-то неучтенный фактор. Решившись проверить невероятную гипотезу, он высчитал, что все несоответствия легко объясняются, если предположить, что на момент возникновения реактора в Окло постоянная альфа была чуточку ниже, чем сегодня. Шляхтер поступил, почти как индийский физик Бозе, который даже не пытался разгадать, почему его «неверные» уравнения, связанные с фотонами, столь многое объясняют; он просто знал, что нашел ответы. Проблема заключалась лишь в том, что альфа – это фундаментальная константа. По законам физики она не можетварьировать. Перед сторонниками «тонкой настройки» встает еще более серьезная проблема; если альфа-константа когда-либо изменялась, то, вероятно, никто (или даже Никто) не корректировал ее, чтобы во Вселенной могла зародиться жизнь.
Учитывая серьезность проблемы, после 1976 года многие ученые пытались найти иное объяснение для связи между альфа-константой и Окло или оспорить эту связь. Изменения, которые приходилось регистрировать, были столь малы, а геологическая история за 1,7 миллиарда лет так фрагментарна, что, вероятно, никому не удастся разгадать тайну, связанную с возможной аномалией альфа-константы в Окло. Но, опять же, никогда не следует недооценивать потенциал научной идеи. Работа Шляхтера с изотопами самария разожгла научный интерес многих амбициозных физиков, жаждавших пересмотреть старые теории. В настоящее время ведутся активные исследования, призванные ответить на вопрос, могут ли изменяться физические константы. Серьезный стимул, подстегнувший такие работы, связан с осознанием следующего факта: даже если альфа-константа за последние 1,7 миллиарда лет изменилась «самую малость», то за первый миллиард лет существования Вселенной, в эпоху первозданного хаоса, подобные изменения этой константы могли быть гораздо значительнее. Кстати, ряд австралийских ученых, занимающихся исследованием межзвездных пылевых облаков и далеких звездных систем, называемых квазарами, заявляют, что, возможно, у них появились первые реальные доказательства изменчивости констант[164].
Квазары – это массивные ядра далеких галактик, разрывающие и пожирающие окружающие звезды. В этом процессе выделяются огромные количества энергии, ярчайшего света. Разумеется, когда астрономы регистрируют этот свет, они наблюдают события, не происходящие в реальном времени, а имевшие место давным-давно. Ведь свету требуется значительное время, чтобы пересечь всю Вселенную. Австралийские ученые исследовали, как гигантские бури, бушующие в межзвездных пылевых облаках, влияют на движение света древнейшего квазара. Когда свет пронизывает пылевое облако, газообразные элементы в этом облаке частично поглощают лучи света. Но в отличие от непрозрачных тел, которые вбирают в себя весь попадающий на них свет, эти газообразные элементы впитывают лишь те фотоны, которые движутся с определенными частотами. Более того, подобно атомным часам, элементы поглощают свет не в одном узком диапазоне, а сразу двух тонко расщепленных цветов.
Сначала австралийским ученым не удавалось найти в пылевых облаках элементы, подходящие для такого эксперимента. Оказалось, что большинство этих газообразных элементов «не заметили» бы изменений значения альфа, даже если бы оно колебалось ежедневно. Поэтому ученые задались вопросом, какие элементы обладают повышенной чувствительностью к значению альфа. Одним из таких элементов оказался хром. Чем меньше значение альфа могло быть в прошлом, тем более красные оттенки света должен был поглощать атом хрома, и тем меньше должно было оказаться пространство между его энергетическими уровнями, которые мы выше обозначили как «сольдиез» и «соль-бемоль». Анализируя подобный спектр хрома и других чувствительных элементов вблизи квазара и сравнивая эти результаты с данными опытов, проведенных в лабораторных условиях в наши дни, ученые смогли вычислить, изменилось ли значение константы альфа за время, отделяющее нас от вспышки квазара. Конечно же, как и все ученые, высказывающие неоднозначные предположения, наши австралийские исследователи выражаются о своих открытиях весьма завуалированно; например, они говорят, что «результаты измерений согласуются с гипотезой». Итак, по данным измерений австралийских ученых, значение константы альфа за последние 10 миллиардов лет изменилось примерно на 0,001 %.
Некоторые читатели наверняка подумали, что это просто смехотворное значение, чтобы из-за него вести научные диспуты. Разве можно представить себе, чтобы Билл Гейтс подбирал монетки на обочине? Но в данном случае величина изменения не так важна, как сама возможностьподобного изменения фундаментальных констант[165]. Многие ученые оспаривают данные австралийских коллег, но, если результаты австралийцев подтвердятся, ученым придется переосмыслить всю теорию Большого взрыва. Ведь те законы природы, которые нам известны, вполне могли появиться позднее[166]. Если значение константы альфа действительно меняется, то один лишь этот факт мог бы переформатировать всю эйнштейновскую физику, точно как работы Эйнштейна заставили пересмотреть физику Ньютона, а открытия Ньютона – забыть средневековую схоластику.
В следующем разделе мы обсудим, как изменчивость этого значения может произвести революцию и в еще одной сфере научных исследованиях – в поиске внеземной жизни.
В предыдущих главах мы уже не раз говорили об Энрико Ферми. Он умер от отравления бериллием после своих смелых экспериментов, а также получил Нобелевскую премию по химии за открытие трансурановых элементов, которого не совершал. Но было бы неправильно оставить у вас негативное впечатление об этом титане науки. Ученые во всем мире совершенно искренне уважают Ферми. В его честь назван элемент № 100, фермий. Кроме того, его считают последним великим ученым-универсалом, внесшим огромный вклад как в теоретическую, так и в экспериментальную физику. Ферми беспрестанно отмывал руки то от машинного масла, которым он смазывал приборы, то от мела, которым он выводил формулы на университетской доске. Ферми обладал дьявольски острым умом. В ходе научных диспутов коллегам Ферми то и дело приходилось убегать в рабочий кабинет, чтобы свериться со сложнейшими уравнениями для решения того или иного вопроса. Вернувшись, они порой обнаруживали, что нетерпеливый Ферми уже восстановил все уравнение с нуля и нашел ответ, который был им нужен. Однажды он поручил молодым сотрудникам высчитать, какой слой пыли (в миллиметрах) должен накопиться на окнах его лаборатории (лаборатория Ферми была знаменита своей запущенностью), чтобы вся эта пыль осыпалась на пол под действием собственного веса. Ответ нам неизвестен, в истории сохранился лишь забавный вопрос[167].
Но даже Ферми не мог найти ответ на один обманчиво простой вопрос. Как было сказано выше, многие философы изумляются кажущейся «тонкой настройке» Вселенной. Хочется поверить, что Вселенная специально создана такой, чтобы в ней могла существовать жизнь, поскольку определенные фундаментальные константы имеют «идеально подходящие» для этого значения. Более того, ученые издавна верили, что в космических масштабах Земля является довольно заурядной планетой. Эта вера сродни убеждению в том, что такая универсальная единица, как секунда, не должна быть привязана к скорости вращения Земли по околосолнечной орбите. Учитывая такую заурядность, а также тот факт, какое множество звезд и планет существует во Вселенной, плюс невероятно долгое время, истекшее с момента Большого взрыва (здесь мы абстрагируемся от каких-либо щекотливых религиозных проблем), напрашивается вывод, что Вселенная должна буквально кишеть жизнью. Но мы не только никогда не встречались с инопланетянами, но даже не получили от них ни единого сигнала. Однажды за обедом Ферми размышлял обо всех этих противоречивых фактах и вдруг воскликнул, словно обращаясь к коллегам: «Так где же они все?»
Коллеги дружно рассмеялись, а эта проблема называется с тех пор «парадоксом Ферми». Но другие ученые восприняли вопрос Ферми серьезно и предположили, что на него действительно можно найти ответ.
Самую известную попытку предпринял астрофизик Фрэнк Дрейк, сформулировавший в 1961 году ставшее знаменитым уравнение Дрейка. Уравнение Дрейка напоминает принцип неопределенности по количеству разнообразных толкований, которые мешают понять его истинный смысл. Вкратце можно сказать, что уравнение Дрейка – это ряд допущений: сколько звезд может существовать в галактике, какая доля этих звезд имеет планеты, похожие на Землю, какая часть из этих планет может быть не просто обитаема, но и населена разумными существами, какая часть подобных цивилизаций захочет выйти на контакт и т. д. Изначально Дрейк вычислил, что в нашей галактике должны существовать около десяти цивилизаций, способных к такому контакту[168]. Но, опять же, это была всего лишь догадка, которую многие ученые раскритиковали как бессмысленную спекуляцию. Например, как мы, земляне, можем проанализировать психологию инопланетян и определить, какая часть из них любит поболтать?
Тем не менее уравнение Дрейка очень важное: оно указывает, какие данные нужны астрономам, а также закладывает научную основу астробиологии. Возможно, наши потомки будут рассматривать это уравнение так же, как мы сегодня изучаем первые проекты периодической системы элементов. В последнее время значительно усовершенствовались телескопы и другие орбитальные измерительные устройства, у астробиологов появились мощные инструменты, позволяющие оперировать не только догадками. На самом деле, космический телескоп Хаббл и другие подобные приборы позволили извлечь такое огромное количество информации из самых скудных данных, что современные астробиологи могут сделать значительно более далеко идущие выводы, чем Дрейк. Им не приходится ждать, пока разумные инопланетные существа найдут нас или искать в космосе аналог Великой Китайской стены. Сегодня мы можем напрямую проанализировать доказательства присутствия жизни, даже безмолвной – например, микробов и растений. Для этого нужно искать определенные элементы, в частности магний.
Разумеется, магний не столь важен для существования жизни, как кислород или углерод. Но этот элемент, расположенный в периодической системе под номером 12, может быть очень полезен для примитивных существ, так как обеспечивает превращение органических молекул в живые существа. Практически все живые существа используют в следовых количествах металлы, чтобы с их помощью синтезировать, хранить и обменивать энергетические молекулы. В биологии большинства современных животных важную роль играет гемоглобин, содержащий железо. Однако древнейшие и наиболее успешные с биологической точки зрения существа на нашей планете – синезеленые водоросли – используют для аналогичной цели не железо, а магний. Например, в центре молекулы хлорофилла находится атом магния. Хлорофилл – пожалуй, самое важное органическое вещество на нашей планете. Он обеспечивает фотосинтез, в процессе которого солнечная энергия превращается в сахара, основу всех пищевых цепей. В организме животных магний обеспечивает правильную работу ДНК.
Залежи магния на планете также указывают на наличие жидкой воды – наиболее подходящей среды для возникновения жизни. Соединения магния впитывают воду, как губка, поэтому даже на пустынных и скалистых планетах, таких как Марс, сохраняется шанс найти бактерии (или окаменелости бактериального происхождения) в районе таких залежей. На планетах, богатых водой (в Солнечной системе кроме Земли есть еще одно подобное небесное тело, одно из наиболее перспективных мест для поиска жизни – это Европа, спутник Юпитера), магний помогает поддерживать океан в жидком состоянии. Европа покрыта коркой льда, но подо льдом существует глубокий океан. Сегодня уже известно, что он очень богат солями магния. Как и любые растворенные вещества, соли магния снижают точку замерзания воды, поэтому она остается жидкой при сравнительно низких температурах. Кроме того, соли магния способствуют вулканической деятельности на скалистом дне. Соли увеличивают объем воды, в которой они растворены, обусловленное этим избыточным объемом давление питает вулканы. Вулканы извергают слабоминерализованную воду и перемешивают воду в океанических глубинах. Вдобавок под давлением поверхностный лед трескается, и пузырчатые льд