Температура, при которой происходит смена режима, называется критической температурой.

Для соединения прямых участков труб, а также для перехода между отрезками трубопровода разного диаметра используются специально изготовленные соединительные элементы (колена, отводы, затворы).

колено 90° отвод 90° переходное ответвление разветвление
Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru
колено 180° отвод 30° переходной штуцер наконечник
Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru

Для монтажа отдельных частей трубопроводов и фитингов используются специальные соединения.

сварное фланцевое резьбовое муфтовое
Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru Температура, при которой происходит смена режима, называется критической температурой. - student2.ru

Применение соединений:

Сварное – неразъемное соединение, применяющееся для всех давлений и температур;
Фланцевое – разъемное соединение, применяющееся для высоких давлений и температур;
Резьбовое – разъемное соединение, применяющееся для средних давлений и температур;
Муфтовое – разъемное соединение, применяющееся для низких давлений и температур.

Овальность и разностенность бесшовных труб не должны быть больше чем допустимое отклонение значения диаметра и толщины стенки.

Когда трубопровод находится под давлением, вся его внутренняя поверхность подвергается воздействию равномерно распределённой нагрузки, отчего возникают продольные внутренние усилия в трубе и дополнительные нагрузки на концевые опоры.

Температурные колебания также оказывают воздействие на трубопровод, вызывая изменения в размерах труб. Усилия в закрепленном трубопроводе при колебаниях температур могут превысить допустимое значение и привести к избыточному напряжению, опасному для прочности трубопроводакак в материале труб, так и во фланцевых соединениях.

Колебание температуры перекачиваемой среды также создает температурное напряжение в трубопроводе, которое может передаться на арматуру, насосную станцию и пр. Это может повлечь за собой разгерметизацию стыков трубопроводов, выход из строя арматуры или других элементов.

Оптимальный размер – наименьший из подходящих размеров трубы для конкретного применения, экономически эффективный на протяжении всего срока службы системы.

Формула для расчета производительности трубы:

Q = (π·d²)/4 · v

Q – расход перекачиваемой жидкости;
d – диаметр трубопровода;
v – скорость потока.

На практике для расчета оптимального диаметра трубопровода используют значения оптимальных скоростей перекачиваемой среды, взятые из справочных материалов, составленных на основе опытных данных:

Температура, при которой происходит смена режима, называется критической температурой. - student2.ru

Отсюда получаем формулу для расчета оптимального диаметра трубы:

dо = √((4·Q) / (π·vо))

Q – заданный расход перекачиваемой жидкости;
d – оптимальный диаметр трубопровода;
v – оптимальная скорость потока.

При высокой скорости потока обычно применяют трубы меньшего диаметра, что означает снижение затрат на закупку трубопровода, его техническое обслуживание и монтажные работы . При увеличении скорости происходит возрастание потерь напора на трение и в местных сопротивлениях, что приводит к увеличению затрат на перекачку жидкости.

В технологических установках обычно сталкиваются с различными проблемами при работе с горячими или кипящими средами. В основном причина заключается в испарении части потока горячей жидкости, то есть фазовом превращении жидкости в пар внутри трубопровода или оборудования. Типичный пример – явление кавитации центробежного насоса, сопровождаемое точечным вскипанием жидкости с последующим образованием пузырьков пара (паровая кавитация) или выделением растворенных газов в пузырьки (газовая кавитация).

Трубопровод большего размера предпочтительнее из-за снижения скорости потока в сравнении с трубопроводом меньшего диаметра при постоянном расходе, что обуславливается достижением более высокого показателя NPSH на всасывающей линии насоса.

Также причиной возникновения кавитации при потере давления могут быть точки внезапной смены направления потока или сокращения размера трубопровода.

Возникающая парогазовая смесь создает препятствие прохождению потока и может вызвать повреждения трубопровода, что делает явление кавитации крайне нежелательным при эксплуатации трубопровода.

Гидравлический удар

Гидравлический удар – это резкое, мгновенное (ударное) повышение или понижение давления в напорном трубопроводе, по которому движется жидкость (вода), ввиду резкого изменения во времени скорости ее движения.Это явлениепоявляется тогда, когда движущаяся в трубопроводе жидкость мгновенно останавливается (например, резко закрыли кран, задвижку или выключили насос).

Это явление является самой сильной нагрузкой на трубопровод, в результате чего может произойти его разрыв. Опасность удара зависит от нескольких переменных величин, таких как скорость движения жидкости в трубопроводе, характеристик жидкости и характеристик материала трубопровода. Это явление приводит также к появлению вакуума в трубопроводах, вследствие чего часто бывает смещение или износ уплотнительных колец.

Обычно гидравлические удары можно обнаружить только при возникновении шума. Теории и методики расчета гидроударов в трубах впервые были разработаны и решены выдающимся российским ученым Н.Е.Жуковским. Жуковский предложил также формулу для расчета минимального времени необходимого при закрытии запорного устройства, чтобы избежать или максимально снизить эффект гидравлического удара до минимума:

Сила гидравлического удара снижается за счет увеличения времени срабатывания запорных устройств, а вблизи возможных мест возникновения гидравлических ударов монтируются предохранительные и обратные клапана, вибровставки или компенсаторы, и специальные вставки с воздушной подушкой принимающие на себя удар. Исходя из формулы Жуковского (определяющей увеличение давления при гидравлическом ударе) и величин, от которых зависит скорость распространения ударной волны, для ослабления силы этого явления или для его полного предотвращения необходимо:

  • уменьшить скорость движения жидкости в трубопроводе, за счет увеличения его диаметра;
  • установить демпфирующие устройства (так называемые «хлопушки») в местах возможного появления ударов;
  • увеличить время закрытия клапанов и задвижек, смонтированных на системе;
  • повысить прочность слабых элементов гидравлической системы.

Очень наглядным примером гидравлических ударов является кавитация. При возникновении кавитации, каждое схлопывание пузырька воздуха на поверхности рабочего колеса сопровождается микро гидравлическим ударом. Такие микро удары, происходящие на рабочих поверхностях в миллионных количествах в течение длительно времени способны разрушить поверхность рабочих элементов насоса. Сопровождается кавитация повышенной шумностью в работе оборудования.

Плотность жидкости во много раз больше плотности газа. При внезапном перекрывании воды, давление в трубе резко возрастает на величину pva, где p – плотность жидкости или газа, v – скорость течения и a – скорость звука. Скорость звука в трубе с водой равна 1400 м/с. Поэтому именно с такой скоростью будет распространяться повышенное давление по трубопроводу. Если где-то обнаружиться непрочный участок трубопровода, он будет прорван.

Температура, при которой происходит смена режима, называется критической температурой. - student2.ru

Наши рекомендации