Клетчатка и гемицеллюлозы в зерне, их состав, свойства.

Клетчатка, как и крахмал, состоит из остатков глюкозы. В чем различие химического строения крахмала и клетчатки? Основной «строительный кирпичик» крахмала — дисахарид мальтоза. У клетчатки основная строительная единица — дисахарид целлобиоза. Если у мальтозы а-1,4-глюкозидная связь и она представляет собой а-глюкозидоглюкозу, то у целлобиозы — р-1,4-глюкозидная связь и она является р-глюкозидоглю- козой.

В молекуле клетчатки остатки целлобиозы связаны гликозидными связями в виде длинной цепочки.

Зерно и семена содержат клетчатку в следующих количествах (%): пшеница 3; рожь 2,2; ячмень с цветковыми оболочками до 8; кукуруза 2,2; рис с цветковыми оболочками 9 и без них 1,2; горох 4; соя 3,8; подсолнечник с плодовой оболочкой 15 и ядро 2,2.

Гемицеллюлозы (полуклетчатки). Объединяют полисахариды разнообразного химического состава с общими физическими свойствами. Они не растворяются в воде, но растворимы в щелочах. Содержатся главным образом в отрубях, в периферических, оболочечных частях зерна, в кукурузных початках, соломе. Гемицеллюлозы, как и клетчатка, не усваиваются человеческим организмом. Кислотами они гидролизуются легче, чем клетчатка. Продукты гидролиза дают основание разделить гемицеллюлозы на две группы. Те из них, которые дают гексозы, называют гексозанами. При этом среди гексозанов в зависимости от сахара различают маннаны (если образуется манноза), галактаны (галактоза) и т. д.

Гемицеллюлозы, гидролизующиеся до пентоз, называют пентозанами. Они дают главным образом арабинозу и ксилозу и соответственно называются арабан и ксилан. Имеются также гемицеллюлозы смешанного состава, дающие при гидролизе гексозы, пентозы и уроновые кислоты. В зерне пшеницы и ржи содержится от 8 до 10% гемицеллюлоз (в отдельных случаях до 14%), в том числе от 5 до 8% пентозанов.

При оценке качества пшеничной муки важно знать, сколько в ней неусваиваемых веществ (клетчатки и гемицеллюлоз). Установленное количество клетчатки и гемицеллюлоз могло бы стать показателем пищевой ценности муки и, следовательно, приготовленных из нее продуктов. Однако определение клетчатки и гемицеллюлоз — длительный процесс, поэтому для определения качества муки пользуются более быстрым определением ее зольности или цвета.

Липиды.

Липиды представляют собой обширную группу органических соединений, существенно различающихся по своей химической структуре и функциям. Они не растворяются в воде, а хорошо растворимы в неполярных растворителях (таких, как эфир, хлороформ или бензол). Большинство липидов являются сложными эфирами многоатомных или специфически построенных спиртов с высшими жирными кислотами.

Существует несколько классификаций липидов. Наибольшее распространение получила классификация, основанная на структурных особенностях липидов. По этой классификации различают следующие группы липидов.

1) Простые липиды: сложные эфиры жирных кислот с различными спиртами (например, ацилглицерины, или ацилглицеролы и воски).

2) Сложные липиды: сложные эфиры жирных кислот со спиртами, дополнительно содержащие и другие группы (например, фосфолипиды, включающие глицерофосфолипиды и сфинголипиды; гликолипиды, сульфолипиды, липопротеины и др.).

3) Предшественники и производные липидов (жирные кислоты, глицерол, стеролы и прочие спирты, жирорастворимые витамины, стероидные гормоны и др.)

Разделение липидов по физико-химическим свойствам учитывает степень их полярности. По этому признаку липиды делят на нейтральные, или неполярные, и полярные. К первому типу относятся липиды, не имеющие заряда. Ко второму – липиды, несущие заряд и обладающие отчетливыми полярными свойствами (например, фосфолипиды, жирные кислоты).

Наиболее важной группой липидов являются жиры, которые в живых организмах служат энергетическим материалом.

Жиры практически нерастворимы в воде, а растворимы в органических растворителях. Животные жиры обычно твердой консистенции, растительные жиры (масла), как правило, жидкие.

Жир — это сложный эфир трехатомного спирта глицерина и высокомолекулярных жирных кислот. В его состав могут входить, как насыщенные, так и ненасыщенные жирные кислоты. В растительных жирах (в частности в злаках) присутствуют ненасыщенные высокомолекулярные жирные кислоты: олеиновая, линолевая и линоленовая. Ненасыщенные жирные кислоты в свободном виде (т. е. после гидролиза жира) способны влиять на качество клейковины пшеницы, они уменьшают водопоглотительную способность клейковины и увеличивают ее упругость.

Под воздействием фермента липазы происходит гидролиз жиров зерна. В дальнейшем при участии другого фермента — липоксигеназы, а также под действием света и О2 воздуха окисляются ненасыщенные жирные кислоты до перекисей и гидроперекисей, которые затем превращаются в альдегиды и кетоны. Таким образом, происходит прогоркание жира, т. е. порча продуктов, при этом появляется неприятный запах и вкус.

Кроме жиров, в группу липидов входят фосфатиды, каротиноиды, стероиды, гликолипиды и воска.

Из фосфатидов наиболее важен лецитин, в котором в качестве азотистого основания содержится холин. В зерне пшеницы лецитин составляет 0,65%, ржи — 0,57%, кукурузы — 0,38%, льна — 0,88%, сои — 1,68%. Он играет важную роль в обмене веществ, регулируя проницаемость клеток. В пищевой промышленности его используют в качестве эмульгатора при производстве маргарина или шоколада.

В зерне встречается также фосфатид, или фитин. Он представляет собой соль инозитгексафосфорной кислоты. Фитин содержится в зерне злаков, конопляном и хлопковом жмыхе, фитиновая кислота образует с кальцием труднорастворимые соли, что препятствует усвоению человеком кальция.

Каротиноиды представляют собой высокомолекулярные углеводороды или их кислородные производные желтого или желто-оранжевого цвета Кремовый оттенок пшеничной муки связан с наличием каротиноидов.

Гликолипиды зерна образуют с белками клейковины комплексы и тем самым оказывают положительное влияние на хлебопекарные свойства пшеницы.

Восков в зерне мало. Они служат для образования пленки на зерне.

Механизм прогоркания жиров.

Жиры зерна содержат главным образом ненасыщенные жирные кислоты. Благодаря тому, что в ненасыщенных жирных кислотах есть двойные связи, они очень легко окисляются, и именно с процессом окисления ненасыщенных кислот связано прогоркание муки и крупы при хранении. Процесс окисления ненасыщенных жирных кислот может значительно ускоряться под влиянием особого фермента, содержащегося в зерне, муке и крупе, – липоксигеназы. Она особенно активна в сое и соевой муке. В результате действия липоксигеназы ненасыщенные жирные кислоты образуют перекиси и гидроперекиси. Перекиси и гидроперекиси являются очень активными окислителями. Они легко окисляют жирные кислоты, причем образуются неприятные на вкус и запах вещества, вследствие чего жир прогоркает. Поэтому наличие в зерне липоксигеназы способствует прогорканию муки и крупы при хранении. Перекиси и гидроперекиси могут легко окислять также желтые красящие вещества муки – каротиноиды, вследствие чего мука и тесто светлеют. Это обстоятельство имеет большое значение при изготовлении и сушке макарон. Поэтому в последние годы усиленно изучается активность липоксигеназы у различных сортов твердых пшениц, из которых готовят муку, используемую в макаронной промышленности.

.

.

.

.

.

Наши рекомендации