Различие между физической химией и химической физикой

История физической химии

Начало физической химии было положено в середине 18 века. Термин «Физическая химия» принадлежит М.В. Ломоносову, который в 1752году впервые прочитал студентам Петербургского университета «Курс истинной физической химии». В этом курсе он сам дал такое определение этой науке: «Физическая химия — наука, которая должна на основании положений и опытов физических объяснить причину того, что происходит через химические операции в сложных телах».

Затем последовал более чем столетний перерыв и следующий курс физической химии читал уже академик Н.Н. Бекетов в Харьковском университете в 1865году. Вслед за Н.Н. Бекетовым началось преподавание физической химии и в других университетах в России. Флавицкий (Казань 1874г.), В. Оствальд (университет в Тарту 1880г7.), И.А. Каблуков (Московский университет 1886г.).

Признание физической химии, как самостоятельной науки и учебной дисциплины, выразилась в Лейпцигском университете (Германия) в 1887г. Первой кафедрой физической химии во главе с В. Оствальдом и в основании там же первого научного журнала по физической химии. В конце 19 века Лейпцигский университет был центром развития физической химии, а ведущими физико-химиками являлись: В. Оствальд, Я. Вант-Гофф, Аррениуси Нернст.

Первая в России кафедра физической химии была открыта в 1914 году на физико-математическом факультете Санкт−Петербургского универстета, где осенью приступил к чтению обязательного курса и практическим занятиям по физической химии М. С. Вревский.

Молекулы, ионы, свободные радикалы.

Атомы элементов могут образовать три вида частиц, участвующих в химических процессах - молекулы, ионы и свободные радикалы.

Молекулой называется наименьшая нейтральная частица вещества, обладающая его химическими свойствами и способная к самостоятельному существованию. Различают одноатомные и многоатомные молекулы (двух-, трехатомные и т.д.). В обычных условиях из одноатомных молекул состоят благородные газы; молекулы высокомолекулярных соединений, напротив, содержат много тысяч атомов.

Ион - заряженная частица, представляющая собой атом или группу химически связанных атомов с избытком электронов (анионы) или недостатком их (катионы). В веществе положительные ионы всегда существуют вместе с отрицательными. Так как электростатические силы, действующие между ионами, велики, то невозможно создать в веществе сколько-нибудь значительный избыток ионов одного знака.

Свободным радикалом называется частица, обладающая ненасыщенными валентностями, т. е. частица с неспаренными электронами. Такими частицами являются, например ·СН3 и ·NH2. В обычных условиях свободные радикалы, как правило, не могут существовать длительное время, поскольку чрезвычайно реакционноспособны и легко реагируют, образуя инертные частицы. Так, два метильных радикала ·СНз соединяются в молекулу С2Н6 (этан). Протекание многих реакций невозможно без участия свободных радикалов. При очень высоких температурах (например, в атмосфере Солнца) единственными двухатомными частицами, которые могут существовать, являются свободные радикалы (·CN, ·ОН, ·СН и некоторые другие). Много свободных радикалов присутствует в пламени.

Известны свободные радикалы более сложного строения, которые сравнительно стабильны и могут существовать при обычных условиях, например радикал трифенилметил (С6Н5)3С· (с его открытия началось изучение свободных радикалов). Одной из причин его стабильности являются пространственные факторы - большие размеры фенильных групп, которые препятствуют соединению радикалов в молекулу гексафенилэтана.

Ковалентная связь.

Каждая химическая связь в структурных формулах представляется валентной чертой, например:

H−H (связь между двумя атомами водорода)

H3N−H+ (связь между атомом азота молекулы аммиака и катионом водорода)

(K+)−(I) (связь между катионом калия и иодид-ионом).

Химическая связь образуется за счет притяжения ядер атомов к паре электронов (обозначаются точками ··), которую в электронных формулах сложных частиц (молекул, сложных ионов) изображают валентной чертой −, в отличие от собственных, неподеленных пар электронов каждого атома, например:

:::F−F::: (F2); H−Cl::: (HCl); .. H−N−H | H (NH3)

Химическая связь называется ковалентной, если она образована путем обобществления пары электронов обоими атомами.

Полярность молекул

Молекулы, которые образованы атомами одного и того же элемента, как правило, будут неполярными, как неполярны и сами связи в них. Так, молекулы Н2, F2, N2 неполярны.

Молекулы, которые образованы атомами разных элементов, могут быть полярными и неполярными. Это зависит от геометрической формы.
Если форма симметрична, то молекула неполярна (BF3, CH4, CO2, SO3), если асимметрична (из-за наличия неподелённых пар или неспаренных электронов), то молекула полярна (NH3, H2O, SO2, NO2).

При замене одного из боковых атомов в симметричной молекуле на атом другого элемента также происходит искажение геометрической формы и появление полярности, например в хлорпроизводных метана CH3Cl, CH2Cl2 и CHCl3 (молекулы метана CH4 неполярны).

Полярность несимметричной по форме молекулы вытекает из полярности ковалентных связей между атомами элементов с разной электроотрицательностью.
Как отмечалось выше, происходит частичный сдвиг электронной плотности вдоль оси связи к атому более электроотрицательного элемента, например:

Hδ+ → Clδ− Bδ+ → Fδ−
Cδ− ← Hδ+ Nδ− ← Hδ+


(здесь δ - частичный электрический заряд на атомах).

Чем больше разность электроотрицательностей элементов, тем выше абсолютное значение заряда δ и тем более полярной будет ковалентная связь.

В симметричных по форме молекулах (например, BF3) "центры тяжести" отрицательного (δ−) и положительного (δ+) зарядов совпадают, а в несимметричных молекулах (например, NH3) - не совпадают.
Вследствие этого в несимметричных молекулах образуется электрический диполь - разнесённые на некоторое расстояние в пространстве разноименные заряды, например, в молекуле воды.

Водородная связь.

При изучении многих веществ были обнаружены так называемые водородные связи. Например, молекулы HF в жидком фтороводороде связаны между собой водородной связью, аналогично связаны молекулы Н2О в жидкой воде или в кристалле льда, а также молекулы NH3 и Н2О между собой в межмолекулярном соединении - гидрате аммиака NH3 · Н2О.

Различие между физической химией и химической физикой - student2.ru водородные связи между молекулами воды Водородная связь образуется за счёт сил электростатического притяжения водородсодержащих полярных молекул, содержащих атомы наиболее электроотрицательных элементов - F, O, N. Например, водородные связи имеются в HF, Н2О, NH3, но их нет в HCl, Н2S, PH3.

Водородные связи малоустойчивы и разрушаются довольно легко (например, при плавлении льда, кипении воды). Однако на разрыв этих связей затрачивается некоторая дополнительная энергия, и поэтому температуры плавления и кипения веществ с водородными связями между молекулами оказываются значительно выше, чем у подобных веществ, но без водородных связей:

Вещество Температура плавления Температура кипения
HF −83,36 °C +19,52 °C
HCl −114,00 °C −85,08 °C
H2O 0,00 °C +100,00 °C
H2S −8,54 °C −60,35 °C
 

Валентность. Донорно-акцепторные связи.Согласно теории молекулярного строения, атомы могут образовывать столько ковалентных связей, сколько орбиталей у них занято одним электроном, однако так бывает не всегда. [В принятой схеме заполнения АО вначале указывают номер оболочки, затем тип орбитали и далее, если на орбитали находится более одного электрона, – их число (верхний индекс). Так, запись (2s)2 означает, что на s-орбитали второй оболочки находятся два электрона.] Атом углерода в основном состоянии (3Р) имеет электронную конфигурацию (1s)2(2s)2(2px)(2py), при этом две орбитали не заполнены, т.е. содержат по одному электрону. Однако соединения двухвалентного углерода встречаются очень редко и обладают высокой химической активностью. Обычно углерод четырехвалентен, и связано это с тем, что для его перехода в возбужденное 5S-состояние (1s)2(2s) (2px)(2py)(2pz) с четырьмя незаполненными орбиталями нужно совсем немного энергии. Энергетические затраты, связанные с переходом 2s-электрона на свободную 2р-орбиталь, с избытком компенсируются энергией, выделяющейся при образовании двух дополнительных связей. Для образования незаполненных АО необходимо, чтобы этот процесс был энергетически выгодным. Атом азота с электронной конфигурацией (1s)2(2s)2(2px)(2py)(2pz) не образует пятивалентных соединений, поскольку энергия, необходимая для перевода 2s-электрона на 3d-орбиталь с образованием пятивалентной конфигурации (1s)2(2s)(2px)(2py)(2pz)(3d), слишком велика. Аналогичным образом, атомы бора с обычной конфигурацией (1s)2(2s)2(2p) могут образовывать трехвалентные соединения, находясь в возбужденном состоянии (1s)2(2s)(2px)(2py), которое возникает при переходе 2s-электрона на 2р-АО, но не образует пятивалентных соединений, поскольку переход в возбужденное состояние (1s)(2s)(2px)(2py)(2pz), обусловленный переводом одного из 1s-электронов на более высокий уровень, требует слишком много энергии. Взаимодействие атомов с образованием связи между ними происходит только при наличии орбиталей с близкими энергиями, т.е. орбиталей с одинаковым главным квантовым числом. Соответствующие данные для первых 10 элементов периодической системы суммированы ниже. Под валентным состоянием атома понимают состояние, в котором он образует химические связи, например состояние 5S для четырехвалентного углерода.

ВАЛЕНТНЫЕ СОСТОЯНИЯ И ВАЛЕНТНОСТИ ПЕРВЫХ ДЕСЯТИ ЭЛЕМЕНТОВ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
Элемент Основное состояние Обычное валентное состояние Обычная валентность
H (1s) (1s)
He (1s)2 (1s)2
Li (1s)2(2s) (1s)2(2s)
Be (1s)2(2s)2 (1s)2(2s)(2p)
B (1s)2(2s)2(2p) (1s)2(2s)(2px)(2py)
C (1s)2(2s)2(2px)(2py) (1s)2(2s)(2px)(2py)(2pz)
N (1s)2(2s)2(2px)(2py)(2pz) (1s)2(2s)2(2px)(2py)(2pz)
O (1s)2(2s)2(2px)2(2py)(2pz) (1s)2(2s)2(2px)2(2py)(2pz)
F (1s)2(2s)2(2px)2(2py)2(2pz) (1s)2(2s)2(2px)2(2py)2(2pz)
Ne (1s)2(2s)2(2px)2(2py)2(2pz)2 (1s)2(2s)2(2px)2(2py)2(2pz)2

Указанные закономерности проявляются в следующих примерах:

Различие между физической химией и химической физикой - student2.ru

История физической химии

Начало физической химии было положено в середине 18 века. Термин «Физическая химия» принадлежит М.В. Ломоносову, который в 1752году впервые прочитал студентам Петербургского университета «Курс истинной физической химии». В этом курсе он сам дал такое определение этой науке: «Физическая химия — наука, которая должна на основании положений и опытов физических объяснить причину того, что происходит через химические операции в сложных телах».

Затем последовал более чем столетний перерыв и следующий курс физической химии читал уже академик Н.Н. Бекетов в Харьковском университете в 1865году. Вслед за Н.Н. Бекетовым началось преподавание физической химии и в других университетах в России. Флавицкий (Казань 1874г.), В. Оствальд (университет в Тарту 1880г7.), И.А. Каблуков (Московский университет 1886г.).

Признание физической химии, как самостоятельной науки и учебной дисциплины, выразилась в Лейпцигском университете (Германия) в 1887г. Первой кафедрой физической химии во главе с В. Оствальдом и в основании там же первого научного журнала по физической химии. В конце 19 века Лейпцигский университет был центром развития физической химии, а ведущими физико-химиками являлись: В. Оствальд, Я. Вант-Гофф, Аррениуси Нернст.

Первая в России кафедра физической химии была открыта в 1914 году на физико-математическом факультете Санкт−Петербургского универстета, где осенью приступил к чтению обязательного курса и практическим занятиям по физической химии М. С. Вревский.

Различие между физической химией и химической физикой

Обе эти науки находятся на стыке между химией и физикой, иногда химическую физику включают в состав физической химии. Провести чёткую границу между этими науками не всегда возможно. Однако с достаточной степенью точности это отличие можно определить следующим образом:

· физическая химия рассматривает суммарно процессы, протекающие с одновременным участием множества частиц;

· химическая физика рассматривает отдельные частицы и взаимодействие между ними, то есть конкретные атомы и молекулы (таким образом, в ней нет места понятию «идеальный газ», которое широко используется в физической химии).

Лекция 2Строение молекул и природа химической связи. Виды химических связей. Понятие об электроотрицательности элемента. Поляризация. Дипольный момент. Атомная энергия образования молекул. Методы экспериментального исследования строения молекул.

Строение молекул(молекулярная структура), взаимное расположение атомов в молекулах. В ходе химических реакций происходит перегруппировка атомов в молекулах реагентов и образуются новые соединения. Поэтому одна из фундаментальных химических проблем состоит в выяснении расположения атомов в исходных соединениях и характера изменений при образовании из них других соединений.

Первые представления о структуре молекул основывались на анализе химического поведения вещества. Эти представления усложнялись по мере накопления знаний о химических свойствах веществ. Применение основных законов химии позволяло определить число и тип атомов, из которых состоит молекула данного соединения; эта информация содержится в химической формуле. Со временем химики осознали, что одной химической формулы недостаточно для точной характеристики молекулы, поскольку существуют молекулы-изомеры, имеющие одинаковые химические формулы, но разные свойства. Этот факт навел ученых на мысль, что атомы в молекуле должны иметь определенную топологию, стабилизируемую связями между ними. Впервые эту идею высказал в 1858 немецкий химик Ф.Кекуле. Согласно его представлениям, молекулу можно изобразить с помощью структурной формулы, в которой указаны не только сами атомы, но и связи между ними. Межатомные связи должны также соответствовать пространственному расположению атомов. Этапы развития представлений о строении молекулы метана отражены на рис. 1. Современным данным отвечает структура г: молекула имеет форму правильного тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода.

Различие между физической химией и химической физикой - student2.ru
 
Рис. 1. ЧЕТЫРЕ СПОСОБА ИЗОБРАЖЕНИЯ МОЛЕКУЛЫ МЕТАНА а – химическая формула. Указаны лишь число и тип атомов; б – структурная формула; в – реальная схема молекулы; г – пространственное расположение атомов в молекуле.

Подобные исследования, однако, ничего не говорили о размерах молекул. Эта информация стала доступна лишь с разработкой соответствующих физических методов. Наиболее важным из них оказалась рентгеновская дифракция. Из картин рассеяния рентгеновских лучей на кристаллах появилась возможность определять точное положение атомов в кристалле, а для молекулярных кристаллов удалось локализовать атомы в отдельной молекуле. Среди других методов можно отметить дифракцию электронов при прохождении их через газы или пары и анализ вращательных спектров молекул.

Вся эта информация дает только общее представление о структуре молекулы. Природу химических связей позволяет исследовать современная квантовая теория. И хотя с достаточно высокой точностью молекулярную структуру рассчитать пока не удается, все известные данные о химических связях можно объяснить. Было даже предсказано существование новых типов химических связей.

Наши рекомендации