Химические свойства аминокислот.

Аминокислоты – это гетерофункциональные органические соединения, вступающие в реакции, характерные для карбоксильных групп, аминогрупп, и проявляющие ряд специфических биохимических свойств.

1. Как амфолиты a-аминокислоты образуют соли при взаимодействии с кислотами и основаниями.

 
  Химические свойства аминокислот. - student2.ru

Химические свойства аминокислот. - student2.ru аланин натриевая соль аланина

аланин гидрохлорид аланина

2.Реакция декарбоксилирования a-аминокислоты – это ферментативный процесс образования биогенных аминов из соответствующих a-аминокислот. Декарбоксилирование происходит с участием фермента – декарбоксилазы и кофермента (KoF) – пиридоксальфосфата.

 
  Химические свойства аминокислот. - student2.ru

Химические свойства аминокислот. - student2.ru Гистамин является медиатором аллергических реакции организма. При декарбоксилировании глутаминовой α-аминокислоты образуется ГАМК (γ-аминомасляная кислота), которая является медиатором торможения нервной системы.

3. Реакция дезаминирования – эта реакция является процессом удаления аминогруппы путем окислительного, восстановительного, гидролитического или внутримолекулярного дезаминирования. В организме преобладает путь окислительного дезаминирования с участием ферментов – дегидрогеназ и кофермента – NAD+.

На первой стадии процесса осуществляется дегидрирование a-звена с образованием a-иминокислоты. На второй стадии происходит неферментативный гидролиз a-аминокислоты, приводящий к образованию a-кетокислоты и сопровождающийся выделением аммиака, включающегося в цикл образования мочевины.

Общая схема процесса окислительного дезаминирования:

 
  Химические свойства аминокислот. - student2.ru

Например, реакция окислительного дезаминирования аланина:

Химические свойства аминокислот. - student2.ru

С помощью подобных процессов снижается уровень избыточных АК в клетке.

4. Трансаминирование или переаминирование a-аминокислоты – это путь синтеза необходимых АК из a-кетокислот. При этом донором аминогруппы является a-аминокислота, находящаяся в избытке, а акцептором аминогруппы – a-кетокислота (ПВК, ЩУК, a-кетомасляная кислота). Процесс происходит с участием фермента – трансаминазы и кофермента – пиридоксальфосфата. Например, процесс трансаминирования L-аланина и ЩУК:

Химические свойства аминокислот. - student2.ru

Процесс переаминирования связывает обмен белков и углеводов в организме, он регулирует содержание a-аминокислот и синтез заменимых a-аминокислот.

Кроме этих реакций a-аминокислоты способны образовывать сложные эфиры, ацильные производные и вступать в реакции, которые не имеют аналогий в химии in vitro. К таким процессам относятся гидроксилирование фенилаланина в тирозин.

При отсутствии необходимого фермента в организме накапливается фенилаланин, при его дезаминировании образуется токсичная кислота, накопление которой приводит к тяжелому заболеванию – фенилкетонурии.

Контрольные вопросы

1. Строение α-аминокислот, номенклатура, изомерия.

2. Классификация α-аминокислот по характеру бокового радикала, физико-химические характеристики боковой радикала. Классификация α-аминокислот по способности синтезироваться в организме.

3. Кислотно-основные свойства α-аминокислот.

4. Общие пути обмена α-аминокислот в организме. Реакции декарбоксилирования, трансаминирования, окислительного дезаминирования.

Типовые задания

Задание 1. Напишите все возможные стереоизомеры треонина в проекционных формулах Фишера. Укажите конфигурацию каждого хирального центра. Какие структуры являются энантиомерами, а какие диастереомерами? Есть ли среди приведенных структур мезоформа?

Решение. Молекула треонина содержит два хиральных центра:

Химические свойства аминокислот. - student2.ru

следовательно, число оптических изомеров равно 2n = 22 = 4.

Химические свойства аминокислот. - student2.ru

I и II, III и IV - энантиомеры;

I и III, I и IV, II и III, II и IV - σ-диастереомеры.

Среди приведенных структур мезоформы нет, так как каждый стереоизомер имеет свой энантиомер.

Задание 2. Приведите примеры α-аминокислот, входящих в состав белков, с гидрофобными и гидрофильными боковыми радикалами.

Решение.α-Аминокислоты с гидрофобными радикалами: глицин, аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан и пролин (иминокислота). Радикалы этих аминокислот воду не притягивают, а стремятся друг к другу или к другим гидрофобным молекулам.

α-Аминокислоты с гидрофильными радикалами: серин, треонин, тирозин, аспарагиновая кислота, глутаминовая кислота, цистеин и оксипролин (иминокислота). В состав радикалов этих аминокислот входят полярные функциональные группы, образующие водородные связи с водой.

В свою очередь, эти аминокислоты делят на две группы:

- неионогенные α-аминокислоты, не способные к ионизации.

Химические свойства аминокислот. - student2.ru Например, гидроксильная группа треонина:

- ионогенные α-аминокислоты, способные к ионизации в условиях организма.

К α-аминокислотам с отрицательно заряженными радикалами относятся тирозин, цистеин, аспарагиновая и глутаминовая кислоты. Эти аминокислоты называют кислыми.

Например, при рН 7 фенольная гидроксильная группа тирозина ионизирована на 0,01%; тиольная группа цистеина - на 8%.

Полностью ионизированные формы аспарагиновой и глутаминовой кислот называют аспартатом и глутаматом:

Химические свойства аминокислот. - student2.ru

К α-аминокислотам с положительно заряженными радикалами относятся лизин, аргинин и гистидин. Эти аминокислоты называют оснóвными.

У лизина есть вторая аминогруппа, способная присоединять протон:

Химические свойства аминокислот. - student2.ru

У аргинина положительный заряд приобретает гуанидиновая группа:

Химические свойства аминокислот. - student2.ru Пиридиновый атом азота в имидазольном ядре гистидина содержит неподеленную пару электронов, которая также может присоединять протон:

Химические свойства аминокислот. - student2.ru

Задание 3. Для аланина напишите уравнения реакций, иллюстрирующих его амфотерный характер.

Решение. Напишем формулу аланина – 2-аминопропановой кислоты

Химические свойства аминокислот. - student2.ru

Как все аминокислоты, аланин за счет наличия карбоксильной группы обладает кислотными свойствами, а за счет аминогруппы проявляет основные свойства.

Реакция, иллюстрирующая кислотные свойства аланина, – это реакция взаимодействия со щелочью, с образованием натриевой соли аланина.

Химические свойства аминокислот. - student2.ru

Реакция, доказывающая основные свойства аланина, – это реакция взаимодействия с соляной кислотой, с образованием соответствующей соли.

Химические свойства аминокислот. - student2.ru

Задание 4. Смесь глицина, аланина, лизина, аргинина, серина и глутаминовой кислоты разделяли методом электрофореза при рН 6.

Наши рекомендации