Термические превращения углеводородов нефти

Термодинамика процесса

Применение законов химической термодинамики дает возмож­ность определить вероятность протекания реакции, максимальную степень превращения и равновесную концентрацию продуктов.

Термодинамическая вероятность протекания химической реак­ции определяется величиной изменения в процессе свободной энергии Гиббса ΔGT.

Зная величину, можно рассчитать константу равновесия реакции по уравнению:

lg KP = – ΔGT0 /4,575T.

Значение и знак при ΔGT являются критерием принципиальной осуществимости процесса, что вытекает из следующих рассужде­ний. Константа равновесия реакции определяется отношением:

KP = k1/ k2 ,

где k1 — константа скорости прямой реакции;

k2 — константа скоро­сти обратной реакции.

Чтобы реакция протекала в прямом направ­лении (слева направо), скорость прямой реакции должна быть выше скорости обратной реакции, т. е. k1 > k2. В таком случае KP будет больше 1, a lg KP > 0.

Согласно уравнению, lg KP > 0 только при условии ΔGT0 < 0. Таким образом, необходимым условием протекания реакции в прямом направлении является отрицательное значение энергии Гиббса. Чем больше числовое отрицательное значение ΔGT0, тем выше скорость прямой реакции.

Изменение свободной энергии образования некоторых углево­дородов в зависимости от температуры приведено на рисунке 11.

термические превращения углеводородов нефти - student2.ru

Рисунок 11 — Зависимость свободной энергии об­разования

углеводородов от температуры

Как следует из этого рисунка, термодинамическая стабильность всех углеводородов, за исключением ацетилена, понижается с повышением температуры. В одном гомологическом ряду стабиль­ность падает с повышением молекулярной массы. При высокой температуре алкены, алкадиены и арены значительно более устойчивы, чем алканы и циклоалканы. Отсюда можно сделать вывод, что для переработки алканов в алкены достаточно простого нагревания до высокой температуры. Однако алкены при любой температуре неустойчивы к вторичным реакциям, например к полимеризации. Кроме того, даже при относительно низкой температуре термодинамически возможен распад углеводородов на элементы. Вследствие этого общее термодинамическое равновесие системы со временем сдвигается в сторону глубоких превращений (с образованием водорода, метана, смолы, кокса). При высокотемпе­ратурных процессах (например, пиролизе) время, следовательно, становится одним из основных параметров. Кинетические законо­мерности приобретают главенствующую роль над термодинами­ческими. Если конечной целью процесса является получение мак­симального выхода алкена, то реакцию надо остановить в момент наибольшей концентрации алкенов и не дать ей приблизиться к конечному термодинамическому равновесию.

Кинетика и механизм процесса

Термические реакции углеводородов могут протекать как моле­кулярные, так и радикальные цепные или нецепные. Ионные реак­ции в условиях термических процессов не протекают, так как гетеролитический распад С—С-связи требует энергии 1206 кДж/моль, значительно большей, чем гомолитический, — 360 кДж/моль.

В настоящее время наиболее принят радикально-цепной ме­ханизм крекинга. Большое значение в создании основ современ­ной кинетики гомогенных газовых реакций имела разработанная академиком Семеновым об­щая теория цепных реакций.

Радикально-цепной процесс термического разложения, как любой цепной процесс, скла­дывается из трех стадий: ини­циирование цепи; продолжение цепи; обрыв цепи.

Инициирование цепи. Рас­пад углеводородов на радика­лы (инициирование цепи) осу­ществляется преимущественно по связи С—С. Разрыва С—Н-связи не происходит, так как для этого требуется значительно больше энергии: энергия С—С-связи 360 кДж/моль; энергия С—Н-связи 412 кДж/моль.

В нормальных алканах с длинной цепью энергия раз­рыва С—С и С—Н-связей не­сколько уменьшается к середи­не цепи, однако первая всегда остается значительно меньше второй:

CH3–CH2–CH2–CH2–CH2–CH2–CH2–CH3

Наши рекомендации