Классификация катионов при кислотно-щелочной системе анализа

Методы анализа»

Химические методы анализа

Введение

Аналитическая химия- наука, разрабатывающая теоретические основы и экспериментальные методы определения состава веществ и (или) их смесей.

Анализ-в переводе с греческого αναλυση означает разложение, расчленение, разделение целого (предмета или явления) на его более простые составные части.

Различают качественный (1) и количественный (2) анализы:

(1) − это установление природы веществ и (или) их частей (элементов, атомов, молекул, ионов и т.д.);

(2) − это определение абсолютного или относительного содержания отдельных составных частей вещества или их смесей.

Методы, позволяющие определять содержание отдельных элементов, называют элементным анализом; функциональных групп – функциональным анализом; индивидуальных химических соединений с определенным молекулярным весом – молекулярным анализом; разделения и определения отдельных структурных составляющих гетерогенных систем называют фазовым анализом.

До сих пор различают органический и неорганический анализы. Аналитическая химия ‑ прикладная наука. Ее методы использовались и используются в развитии естественных наук, установлении законов природы (например, закона постоянства состава, кратных отношений; определение атомных масс элементов, химических формул веществ и т.д.). Химико-технологический контроль процессов и сред является обязательным условием современного производства. Введение стандартов качества на выпускаемую продукцию также невозможно без аналитики. Достижения аналитической химии находят применение в геохимии, геологии, минералогии, физике, биологии, металлургии, физиологии, медицине, астрономии и т.д.

Методы качественного и количественного анализов условно делят на химические (1), физико-химические (2) и физические (3).

Первые основаны на химическом превращении исследуемого вещества в другое вещество, обладающее характерными свойствами. Вторые изучают физические явления, сопровождающие химические процессы. Третьи основаны на исследовании зависимости физического параметра анализируемого объекта от состава. (2) и (3) объединяют под названием инструментальные методы. В последнее время они занимают главенствующее место в аналитической химии в связи с большей точностью, информативностью и экспрессностью. К инструментальным методам относят: спектральные (оптические), электрохимические, распределительные (хроматографические) и радиометрические.

Классификация химических реакций

1. По энергетическому признаку: эндотермические и экзотермические.

N2 + O2 → 2NO; ΔH > 0, эндотермическая, энергия в форме теплоты поглощается; в адиабатических условиях температура системы понижается; энтальпия повышается;

Cl2 + H2 → 2HCl; ΔH < 0, экзотермическая, энергия в форме теплоты выделяется; в адиабатических условиях температура системы повышается; энтальпия понижается;

2. По признаку изменения числа участников: образования и разложения.

H2 + ½ О2 → Н2О - реакция образования;

2КМnO4 → K2MnO4 + MnO2 + О2) - реакция разложения.

3. По признаку изменения состава: реакции обмена и замещения.

AgNO3 + КСl → AgCl↓ + КNO3 - обмена;

Hg(NO3)2 + Cu → Нg↓ + Cu(NO3)2 - замещения.

4. По признаку обратимости: обратимые и необратимые.

N2 + 3H2 ↔ 2NH3 - обратимая;

HCl + NaOH → NaCl + H2O - необратимая.

5. По признаку изменения степени окисления

6. : без изменения и окислительно-восстановительные (Redox).

BaCl2 + H2SO = BaSO4↓ + 2HCl, без изменения;

Redox:

- межмолекулярные: SO2 + 2H2S = 3S↓ + 2H2O;

- внутримолекулярные: KClO3 = KCl + 3/2O2↑;

- диспропорционирования: Cl2 + H2O ↔ HClO + HCl.

Степень окисления (окислительное число) – условный заряд, приписываемый атому элемента, из предположения полного смещения электронов. Степень окисления (С.О.)определяется по следующим правилам:

- для простого вещества С.О.=0;

- для одноатомного иона С.О.= зарядовому числу (заряду) иона;

- сумма С.О. атомов в молекуле = 0;

- сумма С.О. атомов в многоатомном ионе = заряду иона;

- для элементов 1А группы Периодической таблицы С.О.=+1 везде;

- для элементов 2А группы Периодической таблицы С.О.=+2 везде;

- для фтора С.О.=−1 во всех соединениях;

- для водорода С.О.=+1 в соединениях с неметаллами,

С.О.=−1 в соединениях с металлами и бором;

- для кислорода С.О.=−1 в пероксидах,

С.О.=−2 во всех соединениях, кроме OF2;

- для галогенов С.О.=−1 в соединениях с металлами, неметаллами (кроме кислорода) и галогенами ниже в группе.

Аналитические реакции

Реакцию, используемую для аналитических целей, принято называть аналитической реакцией, а вещество, ее вызывающую – реагентом. В аналитике используют реакции, сопровождающиеся явными (или хорошо заметными) внешними эффектами. Это могут быть изменение цвета или интенсивности окраски раствора, образование или растворение осадка, выделение газа с определенным запахом или цветом и т.д.

Аналитический сигнал или аналитический признак – любое свойство системы отличающее ее от остальных.

В качественном анализе различают три вида реакций: реакции открытия (обнаружения) тех или иных веществ, групп, ионов и т.д.; реакции идентификации (подтверждения) или проверки правильности открытия; реакции осаждения (отделения), используемые в систематическом анализе для разделения групп ионов.

Аналитические реакции по способу их выполнения делятся на «мокрые», которые проводятся в (водных) растворах, и «сухие», к которым относят:

- окрашивание пламени газовой горелки солями (обычно летучими хлоридами, карбонатами, нитратами) некоторых металлов в определенный цвет, например, Na − желтый, K − фиолетовый, Sr − карминово-красный, Ba − зеленый, Ca − кирпично-красный;

- образование окрашенных перлов (стекол) при сплавлении, например, Na2B4O7·10H2O, NaNH4HPO4·4H2O с солями металлов: Cr − изумрудно-зеленые, Mn − аметистово-фиолетовые;

- метод растирания, образования окрашенных соединений на фарфоровой пластинке, например, синего (NH4)2[Co(SCN)4] при совместном растирании CoSO4 и NH4SCN.

В зависимости от массы анализируемого вещества различают макроанализ (>1 г), микроанализ (1 мг ÷ 1 мкг), ультрамикроанализ (<1 мкг). На практике чаще имеют дело с полумикроанализом, занимающим промежуточное положение.

Условия выполнения реакции

Среда (кислая, нейтральная или щелочная) создается прибавлением к раствору кислоты, щелочи или буферного раствора; например, осадки, растворимые в кислотах, не образуются в кислой среде.

Температура должна быть соответствующей, так как осадки (например, PbCl2) могут растворяться в горячем растворе; некоторые реакции идут на холоде, некоторые – при нагревании.

Концентрация должна быть достаточной, так как осадок образуется только из пересыщенного раствора, то есть когда его концентрация больше растворимости.

Характеристика реакций

Чувствительность реакции характеризуется взаимосвязанными показателями:

- открываемый минимум (m) – наименьшая масса вещества (в мкг), которая может быть обнаружена посредством данной реакции. Аналитическим целям удовлетворяют реакции, для которых m < 50 мкг;

- минимальная (предельная) концентрация (1:q) – характеризует минимальную концентрацию Cmin, при которой обнаружение вещества возможно в небольшом (одной капле) объеме раствора; q – объем раствора (мл), в котором содержится 1 грамм вещества;

- предельное разбавление (q) − величина, обратная концентрации; аналитическим целям удовлетворяют реакции, эффективные при разбавлении более 1000.

Если минимальный объем, требуемый для обнаружения ионов Vmin (мл), то

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Аналитическая реакция тем чувствительнее, чем меньше открываемый минимум и предельная концентрация и чем больше предельное разбавление.

Специфичность. Специфической реакцией на данный ион называется такая реакция, которая позволяет обнаружить его в условиях опыта в смеси с другими ионами. Например, реакция со щелочью является специфической для обнаружения NH4+ в виде NH3 по запаху.

Ионные уравнения

При анализе неорганических веществ в большинстве случаев имеют дело с водными растворами кислот, оснований, солей, являющихся электролитами. Поэтому «мокрыми» реакциями открывают ионы, а не элементы или вещества.

Все реакции в (водных) растворах электролитов являются реакциями между ионами. Они называются ионными реакциями, а уравнения этих реакций − ионными уравнениями.

В этих уравнениях в молекулярной форме записываются вещества, которые:

- мало ионизируют (НОН),

- малорастворимы (выпадают в осадок, BaSO4↓),

- являются газами (CO2↑),

- являются простыми веществами (О2).

Например:

1. NaOH + HCl → NaCl + HOH – уравнение в молекулярной форме;

Na+ + OH + H+ + Cl → Na+ + Cl + HOH – уравнение в ионной форме, полное ионное уравнение;

OH + H+ → HOH – сокращенное ионное уравнение.

2. BaCl2 + K2SO4 → 2KCl + BaSO4↓;

Ba2+ + 2Cl + 2K+ + SO42‾ → 2K+ + 2Cl + BaSO4↓;

Ba2+ + SO42‾ → BaSO4↓ – сокращенное ионное уравнение.

Для обнаружения Cl используют раствор AgNO3:

HCl + AgNO3 → AgCl↓ + HNO3

− образуется белый творожистый осадок. Данной реакцией открывают не элемент хлор вообще, а именно хлорид ион Cl. Она неэффективна, если хлор присутствует в ином виде, например, NaClO3 или CHCl3. Также можно отметить, что реагентом является не AgNO3, а именно Ag+, а суть реакции выражается сокращенным ионным уравнением:

Ag+ + Cl → AgCl.

Глава1.Качественный дробный и систематический анализы

Применяя специфические реакции можно обнаружить соответствующие ионы так называемым дробным методом, то есть непосредственно в отдельных порциях («раздробленного») исследуемого раствора, не учитывая возможное присутствие других ионов. При этом не имеет значения и порядок открытия ионов.

Если нет специфических реакций, то используют определенную последовательность реакций обнаружения отдельных ионов, представляющую систематический ход анализа. Он состоит в том, что к обнаружению каждого данного иона приступают лишь после того, как все другие ионы, мешающие его обнаружению, будут предварительно обнаружены и удалены из раствора.

Например, анализируемая смесь предположительно содержит Ca2+ и Ba2+, а нужно определить, есть ли Ca2+. Оба катиона образуют белые осадки с оксалат анионом (наиболее чувствительная реакция на кальций). Поэтому сначала выясняют, есть ли в растворе Ba2+, действуя хроматом калия, зная, что хромат кальция растворим:

Ba2+ + CrO42− → BaCrO4↓.

Если в отдельной порции раствора присутствие Ba2+ не подтвердилось, то открывают в другой порции Ca2+. Если Ba2+ присутствует, то его отделяют осаждением в виде желтого BaCrO4 центрифугированием или фильтрованием, проверяя полноту осаждения добавлением к фильтрату капли реагента. Затем в фильтрате открывают Сa2+ добавлением (NH4)2C2O4. Образование белого осадка доказывает присутствие Ca2+.

Кроме осаждения для отделения используют выпаривание и экстракцию органическими растворителями.

При систематическом ходе анализа ионы выделяют из сложной смеси не по одиночке, а целыми группами, пользуясь одинаковым отношением их к действию некоторых реагентов, называемых групповыми реагентами. Выделяемые группы ионов называют аналитическими группами. Групповой реагент должен удовлетворять следующим требованиям:

- практически полное осаждение (10-6 М);

- осадок должен легко растворяться в кислотах;

- избыток реагента не должен мешать открытию оставшихся ионов.

Существуют различные системы анализа: сульфидная, кислотно-щелочная, фосфатная и т.д.

Систематический ход анализа смеси катионов I÷VI групп

Анализ смеси катионов I÷VI групп начинают с открытия дробным методом катионов: NH4+, Na+, Fe2+, Fe3+, Сr3+, Sn2+, Mn2+, Bi3+, Sb3+, Co2+, Ni2+, Cu2+:

NH4+ - нагреванием со щелочами,

Na+ - методом фотометрии пламени,

Fe2+ - в солянокислой среде реакцией с К3[Fe (CN)6],

Fe3+ - в солянокислой среде реакцией с К4[Fe (CN)6],

Cr3+ - реакцией окисления в кислой среде до Cr2O72− и пероксида хрома СrO5 + амиловый спирт,

Sn2+ - реакцией с фосфоромолибдатом аммония (NH4)3[PMo12 O40],

Mn2+ - реакцией окисления висмутатом в кислой среде до МnO4,

Bi3+ и Sb3+ - гидролизом,

Со2+ - реакцией с роданидом аммония NH4SCN + амиловый спирт,

Ni2+ - реакцией с диметилглиоксимом в присутствии NH3+амиловый спирт,

Сu2+ - реакцией с К4[Fe (CN)6],

- реакцией с избытком концентрированного аммиака.

Таблица 1

Таблица 2

Таблица 3

Катион Реагент Аналитическая реакция Методика эксперимента Аналитический сигнал
Fe3+ K4 [Fe(CN)6] 4Fe(NO3)3 + 3K4[Fe(CN)6] = = Fe4[Fe(CN)6]3↓ + 12KNO3 0,5 мл З (задачи) +1 мл Н2О+(1к HCl) + Р(реагент) по каплям Синий осадок (окраш-е) берлинской лазури
Cu2+ K4Fe(CN)6 2Cu(NO3)2 + K4[Fe(CN)6] = Cu2[Fe(CN)6]↓ + 4KNO3 0,5 мл З+Р по каплям Красно-бурый осадок
NH3 ·H2O(изб) Cu(NO3)2 + NH3· H2O = Cu(OH)NO3↓ + NH4NO3 и далее Cu(OH)NO3 + 3NH3 · H2O+NH4NO3= = [Cu(NH3)4](NO3)2 + 4H2O 0,5 мл З+Р (избыток) Ярко-синее окраш-е за счет комплекса [Cu(NH3)4]2+
Cr3+   H2O2 (NaОН, pH>7) Cr(NO3)3 + 3NaOH = Cr(OH)3↓ + 3NaNO3 Cr(OH)3 + NaOH = Na[Cr(OH)4] 2Na[Cr(OH)4]+2NaOH+3H2O2 =2Na2CrO4+8H2O 0,5 мл З + 1 мл NaOH + +1÷2к H2O2 → нагреть до кипения Желтое окрашивание за счет CrO42- иона
H2O2 (H24 , pH<7) 2Na2CrO4+H2SO4=Na2Cr2O7+Na2SO4+H2O Na2Cr2O7+4H2O2+H2SO4=2H2CrO6+3H2O+Na2SO4 Р-р Na2CrO4 (после опыта 1) охладить + H2SO4 по каплям до оранжевой окраски + 0,5 мл изоамилового спирта + 1÷2к Н2О2 → встряхнуть Синее окрашивание спиртового слоя за счет надхромовой к-ты H2CrO6
Mn2+   NaBiO3(тв) 2Mn(NO3)2 + 5NaBiO3 + 16HNO3= = 2HMnO4 + 5Bi(NO3)3 + 5NaNO3 + 7H2O 5 к З+3 мл Н2О + 2÷3к HNO3 + 2÷3 кристалла тв. Р Розово-малиновое окраш-е за счет MnО4- иона
Ni2+ Диметилглиоксим DMG NiCl2 + 2DMG = Ni(DMG)2↓ + 2HCl 0,5 мл З+изб.NH3 ·H2O (до голубой окр.) + 0,5 мл изоамилового спирта + 10 к DMG → встряхнуть Розовый осадок в спиртовом слое
Co2+ NH4SCN (тв) Co(NO3)2 + 4NH4SCN = (NH4)2 [Co(SCN)4] + + 2NH4NO3 0,5 мл З + 0,5 мл изоамил. спирта + 3÷5 кристаллов тв. Р → встряхнуть Синее окрашивание спиртового слоя
NH4+ NaOH(4N)   NH4Cl + NaOH = NH3↑ + NaCl + H2O   2 мл З + 4 мл Р → нагреть до кипения Запах выдел. аммиака (посинение лакмусовой, покраснение фф бумажки)
K+ Na3[Co(NO2)6] 3KNO3 + Na[Co(NO2)6] = K3 [Co(NO2)6] ↓ + 3NaNO3 0,5 мл З + Р по каплям Желтый осадок
Na+ Пламя газ. горелки   Полоску фильтр. бумаги смочить р-ром З → поместить в пламя, не допуская загорания Желтое окрашивание пламени
Al3+ Ализарин С14Н6О2(ОН)2   2÷3 к З+5 к 2н NН3 ∙Н2О (рН=10÷11) + 1÷2 к ализарина Оранжево-красный осадок не растворим в уксусной кислоте
Sn2+ Вi(NO3)3 SnCl2 + 3 NaOH → Na[Sn(OH)4] + 2 NaCl 3 Na[Sn(OH)4] + 2 Bi(NO3)3 + 3 NaOH → 2 Bi↓ + 3 Na2[Sn(OH)6] 2÷3 к З+8÷10 к 2н NaOH + Р по каплям Черный осадок металлического висмута
Mg2+ Магнезон, п – нитробензол, азорезорцин Na2HPO4 Адсорбция красителя на поверхности Mg(OH)2 3 к З+2 к NН3 ∙Н2О + 2 к Р 3 к З + (NH4Cl + NH4OH) + Р по каплям Малиновый цвет   Белый кристаллический осадок

Таблица 4

«Классификация» анионов

Анион Реагент Примечание
I SO32−, SO42−, S2O32−, CO32−, PO43−, BO2, B4O72−, CrO42−, C2O42−, Cr2O72−, F, SiO32−, AsO33−, AsO43− Раствор BaCl2 , нейтральный или слабо-щелочной , pH = 7 ÷ 9 Соли, малорастворимые в воде и разбавленных кислотах
II Cl, Br-−, I, S2−, CN, SCN, [Fe(CN)6]3−, IO3, BrO33−, ClO Раствор AgNO3 (+ 2N HNO3) Соли, малорастворимые в воде и разбавленной HNO3
III NO3, NO2, ClO3, CH3COO, MnO4 Соли бария и серебра растворимы в воде

Общие реакции анионов

Реактивы Анионы I группа:
SO42– SO32– CO32– PO43–
BaCl2 в нейтральной среде Белый осадок ВаSO4 Белый осадок ВаSO3 Белый осадок ВаSO3 Белый осадок ВаHPO4
BaCl2 в кислой среде ВаSO4
AgNО3 в азотно-кислой среде
AgNО3 в нейтральной среде Белый осадок Ag2SO4 Белый осадок Ag2SO3 Белый осадок Ag2CO3 Желтый осадок Ag3PO4
H2SO4 Выделение SO2 Выделение СО2
Реактивы Анионы II группа
Cl Br I
BaCl2 в нейтральной среде
BaCl2 в кислой среде
AgNО3 в азотно-кислой среде Белый осадок AgCl Светло-желтый осадок AgBr Желтый осадок AgI
AgNО3 в нейтральной среде AgCl AgBr AgI
H2SO4
Реактивы Анионы III группа
NO3 CH3COOH
BaCl2 в нейтральной среде
BaCl2 в кислой среде
AgNО3 в азотно-кислой среде XX
AgNО3 в нейтральной среде
H2SO4 Образование CH3COOH
               

Вопросы

1. В чем различие дробного и систематического качественного химического анализа?

2. Какие реагенты называют групповыми?

3. Написать реакции обнаружения ионов Cu2+, Fe3+, Pb2+, Cr3+, Mn2+.

4. В чем заключается классификация анионов? Привести примеры реакций.

5. Написать реакции обнаружения анионов Cl-, SO42-, NO3.

6. Какие ионы можно обнаружить с помощью пламени?

7. Привести примеры использования комплексонообразования для открытия ионов. Написать реакции.

8. Для обнаружения каких ионов используются окислительно-восстановительные реакции. Написать уравнение реакций.

9. В чем заключаются преимущества качественного анализа методом ТСХ (тонкослойной хроматографии)?

10. В чем заключается процесс хроматографирования?

11. Как производится идентификация веществ в методе ТСХ.

12. Что такое Rf, спосою расчета.

13. Какие сорбенты используются в методе ТСХ.

14. В чем заключается сущность метода качественного хроматографического обнаружения катионов металлов (Co2+, Ni2+, Cu2+, Fe3+ и др.)?

Литература

1. Основы аналитической химии. Практическое руководство (под ред. Ю.А. Золотова). М.: Высшая школа, 2006, 460 с.

2. Коренман Я.И. Практикум по аналитической химии. М.: Колос, 2005, 237с.

3. Коренман Я.И., Суханов П.Т. Задачник по аналитической химии. Воронеж: ВГТА, 2004, 339 с.

4. Цитович И.Е. Курс аналитической химии. - М.: Высшая школа, 1994, 495 с.

5. Васильев В.П. Аналитическая химия. - М.: высшая школа, 1989, Т. 1, 384 с.

6. Логинов Н.Я., Воскресенский А.Г., Солодкин И.С. Аналитическая химия. - М.: Просвещение, 1979,479 с.

7. Крешков А.П. Основы аналитической химии. - М.: Химия, 1970, 471 с.

8. Бончев П.Р. Введение в аналитическую химию. - Л.: Химия, 1978,496 с.

Глава 2.Теоретические основы химического анализа

Закон действующих масс

В современной редакции закон, установленный Гульдбергом и Вааге (1867 г.), можно сформулировать так:

Скорость Классификация катионов при кислотно-щелочной системе анализа - student2.ru реакции

∑riRi → продукты

(где ri – стехиометрические коэффициенты, Ri – исходные вещества) пропорциональна произведению активностей исходных веществ в некоторых степенях:

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Данное выражение называется кинетическим уравнением.

k – коэффициент пропорциональности в кинетическом уравнении, называется константойскорости химической реакции;

a – активность, величина, которая будучи подставленной в уравнение для идеальных систем, позволяет рассчитать свойство для реальных систем.

Понятие активности было введено Lewis (1907), как эффективная, действующая, исправленная концентрация с:

Классификация катионов при кислотно-щелочной системе анализа - student2.ru ,

где γ – коэффициент активности, который учитывает отклонения в свойствах реальных систем от идеальных, находят экспериментально или в справочнике. В разбавленных растворах при с→0 , γ→1, a=c. Для растворов сильных электролитов используют среднеионный коэффициент активности γ±.

В кинетическом уравнении ni – частный порядок реакции по Ri ‑ тому веществу; ni может принимать любые действительные значения; чаще ni ≠ ri ,

сумма частных порядков есть порядок реакции ∑ ni = n.

Скорость реакции по i-ому веществу υi есть число молей νi i-ого участника, претерпевающих изменение в единицу времени t в единице реакционного пространства V (объема или площади):

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

По определению υi >0, поэтому в формуле стоит + для продуктов реакции и − для исходных веществ. Скорость реакции в целом υ рассчитывают с учетом стехиометрических коэффициентов ri:

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Если объем постоянный, то скорость реакции υi можно рассчитать как изменение концентрации в единицу времени:

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

На практике имеют дело со средней скоростью Классификация катионов при кислотно-щелочной системе анализа - student2.ru как изменением концентрации за реальное время t:

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Химическое равновесие

На возможность двустороннего протекания химических превращений обратили внимание давно. Так, А.Лавуазье, установивший состав воздуха и воды, получил водород из воды (1783 г.), пропуская ее пары над раскаленным железом

3Fe + 4H2O Классификация катионов при кислотно-щелочной системе анализа - student2.ru Fe3O4 + 4H2.

При той же температуре водород восстанавливает оксид до металла с образованием воды:

4H2 + Fe3O4 Классификация катионов при кислотно-щелочной системе анализа - student2.ru 3Fe + 4H2O.

Наш соотечественник Н.Бекетов, изучая растворение мрамора в уксусной кислоте:

CaCO3 + 2CH3COOH ↔ Ca(CH3COO)2 + CO2↑ + H2O,

обнаружил, что при давлении CO2 равном 17 атмосферам растворение карбоната и выделение углекислого газа прекращается, а при Pco2 >17 атмосфер наблюдается выпадение осадка CaCO3.

Обратимые реакции используются и как аналитические, например:

KCl + NaHC4H4O6 ↔ KHC4H4O6↓ + HCl − открытие K+,

ZnCl2 + H2S ↔ ZnS↓ + 2HCl − открытие Zn2+,

2BaCl2 + K2Cr2O7 +H2O ↔ 2BaCrO4↓ + 2KCl +2HCl − открытие Ba2+,

AsO4 3− +2KJ + 2HCl ↔ AsO33− + J2 + 2KCl + H2O − восстановление As+5,

[CoCl4]2− + 6H2O ↔ [Co(H2O)6]2+ + 4Cl − индикатор влажности.

Закон разбавления Оствальда

Рассмотрим ионизацию простейшего электролита, молекула которого состоит из одного катиона (С) и одного аниона (А). Пусть его степень ионизации αi, концентрация c:

CA ↔ C+ + A.

При равновесии концентрации катионов и анионов равны с·αi, а недиссоциированных молекул с-с αi= с(1-αi), тогда выражение для константы ионизации Ki:

Классификация катионов при кислотно-щелочной системе анализа - student2.ru или Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Если в знаменателе можно пренебречь αi по сравнению с единицей, то получим:

Ki = с·αi2.

Так как по определению Ki есть величина постоянная, не зависящая от концентрации, увеличение с приводит к уменьшению αi и наоборот. В предельно разбавленном растворе (с→0) степень ионизации стремится к единице.

Понятия степень ионизации и константа ионизации применяются в основном к растворам слабых электролитов. Однако и для сильных электролитов αi как эффективная степень ионизации при концентрации с определяется в виде отношения:

α с = Классификация катионов при кислотно-щелочной системе анализа - student2.ru ,

где λс – эквивалентная электропроводимость раствора при концентрации с;

λ0 − эквивалентная электропроводимость предельно разбавленного раствора, то есть при концентрации, стремящейся к нулю.

Константа ионизации (диссоциации – менее предпочтительное, устаревающее название) зависит от природы растворенного вещества и растворителя, от температуры. По значению Ki можно судить о силе слабого электролита, например, сила кислот уменьшается в ряду муравьиная > уксусная > фенол симбатно с уменьшением Ki:

HCOOH − 1,77·10-4; CH3COOH − 1,75·10-5; C6H5OH – 1,01·10-10.

Многоосновные кислоты и основания ионизируют ступенчато, причем константа ионизации следующей ступени, как правило, меньше предыдущей, например, для лимонной кислоты:

1 ступень C6H8O7 ↔ H+ + C6H7O7 , K1 = 7,45·10-4 ,

2 ступень C6H7O7 ↔ H+ + C6H6O72− , K2 = 1,73·10-5 ,

3 ступень C6H6O7 ↔ H+ + C6H5O73− , K3 = 4,02·10-6 .

Общая константа ионизации равна произведению констант отдельных ступеней

K = ∏Ki = K1·K2·K3·….

Ионное произведение воды

Вода – слабый электролит. Ее ионизация

Н2О ↔ ОН + Н+

описывается константой

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Концентрация непроионизировавших (непродиссоциировавших) молекул воды практически не меняется при смещении равновесия, поэтому как постоянную величину ее можно объединить в виде произведения с Ki в новую константу Kw, называемую ионное произведение воды

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Kw не зависит от концентрации ионов ОН или Н+. Их произведение при данной температуре есть величина постоянная, например, при 298 К Kw=1,008·10−14 (моль/л)2. Более удобно пользоваться величиной, полученной после логарифмирования, обозначив действие оператором pX=−lgX:

Классификация катионов при кислотно-щелочной системе анализа - student2.ru

При равновесии [ОН] = [Н+] = Классификация катионов при кислотно-щелочной системе анализа - student2.ru = 10−7 моль/л, поэтому pOH = pH = 7 для нейтрального раствора. В кислом растворе [ОН] < [Н+] и pH < 7 (например, pH = 3, pOH = 14–3 = 11). В щелочном растворе [ОН] > [Н+] и pH > 7 (например, pH = 9, pOH = 14–9 = 5).

Процесс ионизации воды сопровождается поглощением энергии в форме теплоты (∆Hi>0), поэтому при увеличении температуры Kw возрастает. Например, при 100о С pKw=12,23, то есть почти в 100 раз больше, чем при 25о С.

Гидролиз солей

Чистая вода имеет нейтральную реакцию, так как при ее ионизации:

HOH ↔ H+ + OH

концентрации ионов H+ и OHравны.

Опыт показывает, что водные растворы средних солей имеют кислую, щелочную или нейтральную реакции, хотя их молекулы не содержат ни ионов Н+, ни ионов ОН. Это объясняется обратимым взаимодействием ионов соли с молекулами воды, сопровождающимся нарушением равновесия ионизации воды (изменением рН раствора), которое называется гидролизом соли. При этом образуется слабый электролит.

Гидролизу подвергаются соли, образованные при взаимодействии:

  1. слабой кислоты и сильного основания (CH3COONa);
  2. слабого основания и сильной кислоты (NH4Cl);
  3. слабой кислоты и слабого основания (CH3COONH4).

Рассмотрим первый случай.

Ацетат натрия CH3COONa в воде полностью диссоциирует на ионы, т.к. является сильным электролитом. Ионное уравнение гидролиза:

CH3COO+ Na+ + HOH ↔ CH3COOH + Na+ + OH

показывает, что образуется уксусная кислота ‑ слабый электролит, то есть ионы H+ связываются ионами CH3COO. Ионов OH в р-ре становится больше, чем Н+ ‑ р-р имеет щелочную реакцию (pH>7). Говорят, что имеет место гидролиз по аниону.

Во втором случае раствор NH4Cl имеет кислую реакцию (pH<7), т.к. ионы OH связываются катионами NH4+ с образованием слабого электролита NH3·H2O. Это пример гидролиза по катиону, при котором концентрация Н+ становится больше, чем концентрация гидроксил ионов.

В третьем случае происходит гидролиз и по катиону, и по аниону. Значение pH раствора зависит от соотношения сил слабой кислоты и слабого основания.

Хлорид натрия NaCl не подвергается гидролизу, раствор имеет нейтральную реакцию (pH=7), ионы H+ и OH не связываются, так как NaOH и HCl сильные электролиты.

Na+ + Cl + HOH ↔ Na+ + OH + H+ + Cl.

Ступенчатый гидролиз

Ступенчатому гидролизу подвергаются соли, образованные многоосновными слабыми кислотами или многоосновными слабыми основаниями.

Гидролиз по аниону (pH>7).

Na2CO3 + HOH ↔NaHCO3+ NaOH – первая ступень,

NaHCO3+ HOH ↔ H2CO3 + NaOH – вторая ступень.

Гидролиз по катиону (pH<7).

AlCl3 + HOH ↔ AlOHCl2 + HCl – первая ступень,

АlOHCl2 +H2O ↔ Al(OH)2Cl + HCl – вторая ступень,

Al(OH)2Cl + HOH ↔ Al(OH)3 + HCl – третья ступень (очень мало).

Гидролиз – как правило, обратимый процесс не идущий до конца.

Необратимый гидролиз – если продукты уходят из реакции (↓и↑).

Al2S3 + 6H2O = 2Al(OH)3↓+3H2S↑

Обратной гидролизу является реакция нейтрализации

CH3COO + HOH ↔ CH3COOH+ OH.

Подавление и усиление гидролиза

Для усиления гидролиза соли, гидролизующейся по катиону, необходимо добавить основание для связывали ионов Н+

Кt+ + HOH ↔ KtOH +H+

При добавлении кислоты в этом случае гидролиз подавляется. Принцип управления гидролизом соли, образованной слабой кислотой, аналогичен:

An + HOH ↔ AnH + OH.

Для усиления – добавляют кислоту, для уменьшения – основание. Катионы водорода можно связать в кислые анионы (HCO3) или в нейтральные молекулы слабых кислот (H2CO3), действуя на растворы солями сильных оснований слабых кислот, например, Na2CO3 .Анионы можно связывать в комплексные ионы, например,

[Co(OH)]+ , [Al(OH)2]+ .

Применение гидролиза

1. Необратимый гидролиз Al2S3, Cr2S3, TiS2 приводит к образованию осадков соответствующих гидроксидов Al(OH)3 , Cr(OH)3, Ti(OH)4.

2. Характерные реакции открытия катионов и анионов, например, Be, Bi, Sb. Так в результате гидролиза Bi3+ образуется белый осадок хлористого висмутила

BiCl3 +2HOH ↔ Bi(OH)2Cl+2HCl и далее

Bi(OH)Cl ↔ BiOCl↓+H2O.

Буферные системы

Buffer в буквальном переводе означает нечто, что уменьшает воздействие на систему внешней силы. В отношении растворов − это системы, способные сохранять, примерно, постоянную концентрацию ионов H+ при добавлении небольших количеств кислоты или щелочи, а также при разбавлении.

Такими буферирующими свойствами обладают смеси:

1. Cлабая кислота + ee соль сильного основания, например,

СН3СООН + СН3СООNa − ацетатный буфер (рН ~ 5);

2. Слабое основание + его соль сильной кислоты, например,

NH3 . H2O + NH4Cl − аммиачный буфер (рН ~ 9);

3. Смесь двух кислых разнозамещенных солей многоосновной кислоты, например, Na2HPO4 + KH2PO4 − фосфатный буфер (рН ~ 7);

4. Индивидуальная соль, например,

Na2B4O7 . 10H2O, рН~9;

5. Концентрированные растворы сильных кислот и щелочей.

Рассмотрим более подробно ацетатный буфер: уксусная кислота – слабый электпролит, ацетат натрия (соль) – сильный электролит.

СН3СООН ↔ СН3СОО + Н+,

СН3СООNa → СН3СОО + Na+.

Напишем выражение для константы ионизации слабой кислоты Kia и учтем, что в смеси концентрация ацетат аниона практически равна концентрации соли сs, а концентрация непроионизировавших молекул – концентрации кислоты ca

Классификация катионов при кислотно-щелочной системе анализа - student2.ru .

Выразим [H+] и pH:

Наши рекомендации