Эксплуатационные свойства нефтяных топлив
Под эксплуатационными свойствами понимают объективные особенности топлива, которые проявляются в процессе его применения. В понятие «применение» включены все процессы, происходящие в топливе с момента его производства до сгорания.
Процессу сгорания топлива предшествуют процессы его испарения, воспламенения и другие. Характер поведения топлива в каждом процессе и составляет суть его эксплуатационных свойств.
По рекомендации стандарта рассматривают и оценивают следующие эксплуатационные свойства топлив:
1. Испаряемость характеризует способность топлива переходить из жидкого состояния в парообразное. Это свойство формируется из таких показателей качества, как фракционный состав, давление насыщенных, поверхностное натяжение и т.д. Испаряемость определяет технико-экономические и эксплуатационные характеристики ДВС.
2. Воспламеняемость характеризует особенности процесса воспламенения смесей паров топлива с воздухом. Оценка этого свойства базируется на таких показателях качества, как температура вспышки, температура самовоспламенения и др. Показатель воспламеняемости имеет такое же значение, как и горючесть топлива.
3. Горючесть определяет эффективность процесса горения топливовоздушной смеси в камерах сгорания.
4. Прокачиваемостьхарактеризует поведение топлива при перекачках его по трубопроводам и топливным системам, а также при его фильтровании. Это свойство определяет бесперебойность подачи топлива в двигатель при разных температурах эксплуатации. Прокачиваемость оценивают вязкостно-температурными свойствами, температурами помутнения и застывания, предельной фильтруемостью, содержанием воды, механических примесей и др.
5. Склонность к образованию отложений - это способность топлива образовывать отложения различного рода в камерах сгорания, в топливных системах, на выпускных и впускных клапанах. Имеются в виду отложения, образующиеся как при низких температурах в системах питания и смесеобразования, так и нагар, получающийся при высоких температурах в процессе сгорания топлива. Оценка этих свойств базируется на таких показателях качества топлива, как зольность, коксуемость, содержание смолистых веществ, непредельных углеводородов и т.д.
6. Коррозионная активность и совместимость с неметаллическими материалами характеризует способность топлива вызывать коррозионные поражения металлов, набухание, разрушение или изменение свойств резины, герметиков и других материалов. Это свойство предусматривает количественную оценку содержания в топливе коррозионно-активных веществ, испытание стойкости металлов, резины и герметиков при контакте с топливом.
7. Защитная способность - это способность топлива защищать от коррозии материалы при их контакте с агрессивной средой в присутствии топлива и в первую очередь защищать металлы от электрохимической коррозии при попадании воды.
8. Противоизносные свойства характеризуют уменьшение изнашиваемости трущихся поверхностей в присутствии топлива. Это свойство имеет важное значение для двигателей, у которых топливные насосы и топливо-регулирующая аппаратура смазываются только самим топливом без подачи смазочного материала. Свойство оценивается показателями вязкости и самосмазывающей способностью.
9. Охлаждающая способность определяет способность топлива поглощать и отводить тепло от нагретых поверхностей. Свойство имеет значение в тех случаях, когда топливо применяют для охлаждения масла (топливо-маслянные радиаторы) или наружной обшивки летательных аппаратов при больших скоростях полёта. Оценка свойства базируется на таких показателях качества, как теплоёмкость и теплопроводность.
10. Стабильностьхарактеризует сохраняемость показателей качества при хранении и транспортировке. Это свойство оценивает физическую и химическую стабильность топлива и его склонность к биологическому поражению бактериями, грибками и плесенью. Уровень этого свойства позволяет установить гарантийный срок хранения топлива в различных климатических условиях.
11. Экологические свойства характеризуют воздействие топлива и продуктов его сгорания на человека и окружающую среду. Оценка этого свойства базируется на показателях токсичности топлива и продуктов его сгорания и пожароопасности.
В зависимости от вида топлива и его назначения значимость того или иного эксплуатационного свойства может быть больше или меньше.
Испаряемость
Процессу сгорания топлива в двигателе предшествует его испарение и образование смеси паров топлива с кислородом в определённом соотношении. При полном сгорании углеводородов топлива получаются главным образом диоксид углерода и вода:
Н2 + 0,5О2 Н2О С + О2 СО2
Пользуясь этими уравнениями можно посчитать, что для полного сгорания 1 кг водорода требуется 8 кг кислорода, а для сгорания 1 кг углерода 8/3 кг кислорода. Зная элементный состав топлива можно найти необходимое количество кислорода для полного сгорания 1 кг топлива, с учётом кислорода, содержащегося в топливе. В результате известно, что для сгорания 1 кг углеводородного топлива необходимо около 15 кг воздуха. Смесь такого состава называют нормальной, теоретической или стехиометрической. Избыток или недостаток воздуха в смеси характеризуют коэффициентом избытка воздуха, который рассчитывается как отношение действительной массы воздуха в смеси к теоретически необходимой для полного сгорания топлива данного состава. для нормальной смеси a = 1, для богатой смеси a меньше 1, для бедной a больше 1.
В современных двигателях испарение топлива и образование паровоздушной смеси может начинаться до начала процесса сгорания при относительно низких температурах и заканчиваться уже в процессе сгорания испарившейся части топлива при высоких температурах.
Некоторые законы испарения. Скорость испарения определяется по уравнению вытекающему из закона Дальтона:
V=A*(pн - p),
где V - скорость испарения;
p - парциальное давление паров над поверхностью жидкости;
pн - давление насыщенных паров жидкости при данной температуре;
A - коэффициент пропорциональности.
Давление насыщенных паров определяется в приборе, называемом «бомба», который состоит из двух соединённых друг с другом камер. В нижнюю камеру, имеющую объём, в четыре раза меньший, чем у верхней, заливают исследуемое топливо. «Бомбу» помещают в водяную «баню», обеспечивающую заданную температуру, и замеряют давление паров прибором. Косвенно давление насыщенных паров можно охарактеризовать по фракционному составу, чем больше в нём низкокипящих фракций, тем выше давление насыщенных паров.
При p = 0, т.е. в начальный момент испарения, скорость процесса максимальна и близка к скорости свободного испарения. В этом случае она прямо пропорциональна давлению насыщенных паров жидкости, тем больше топлива испарится прежде, чем концентрация молекул в паровой фазе достигнет состояния динамического равновесия. При p = pн скорость испарения становится равной нулю, испарения прекращается, наступает равновесие между жидкой и паровой фазами, когда из жидкости в единицу времени «вылетает» столько же молекул, сколько молекул пара ею поглощается.
Давление насыщенных паров зависит от температуры и для углеводородов имеет вид показательной функции.
Нефтяные топлива представляют собой смесь углеводородов с разным давлением насыщенных паров. Поэтому в процессе испарения состав паров всегда отличается от состава жидкости. Есть определённые законы, гласящие, что в паре содержится больше того компонента, добавление которого в раствор повышает общее давление паров. В итоге в паровой фазе над топливом концентрация низкокипящих углеводородов всегда больше, чем в жидкой фазе. Поэтому давление насыщенных паров смеси углеводородов зависит не только от температуры, но и от соотношения объёмов паровой и жидкой фаз. При большом соотношении этих фаз низкокипящих углеводородов может не хватить для заполнения всей паровой фазы, поэтому увеличение паровой фазы по сравнению с объёмом жидкой фазы ведёт к снижению давления насыщенных паров такой смеси углеводородов.
В процессах смесеобразования испаряющееся топливо и газовая среда движутся относительно друг друга, при этом достаточно небольшого движения воздуха, чтобы количество испаряющейся в него жидкости резко возросло.
При испарении в неподвижный воздух скорость испарения определяется скоростью диффузии паров в окружающее пространство. При высоких скоростях воздушного потока и турбулентном режиме его течения скорость диффузии уже не имеет решающего значения; в этих условиях скорость испарения зависит от скорости потоков и скорости движения вихрей. Испарение при этом идёт в условиях вынужденной конвекции.
Скорость испарения жидкости прямо пропорциональна поверхности испарения. Чтобы ускорить процесс смесеобразования, жидкое топливо распыляют на мельчайшие капли. Поверхность испарения, а следовательно, и скорость испарения резко возрастают.
Тонкость распыла зависит как от условий распыла (величина и форма отверстия распылителя, степень турбулизации топлива), так и от свойств топлива и в первую очередь от величины поверхностного натяжения.
Поверхностное натяжение углеводородов зависит от их строения. Наименьшее поверхностное натяжение имеют алканы, наибольшее - ароматические углеводороды. С повышением температуры поверхностное натяжение углеводородов и их смесей уменьшается. На границе двух фаз поверхностное натяжение зависит от свойств обеих фаз. Для углеводородов поверхностное натяжение на границе с воздухом примерно в 2 раза меньше, чем на границе с водой.
Испаряемость топлива оказывает значительное влияние на рабочий процесс и эксплуатационные характеристики двигателей.
Испаряемость бензина по нижнему пределу ограничена возможностью пуска двигателя при отрицательных температурах, по верхнему - образованием паровых пробок. Совместить оба требования при больших изменениях температуры окружающей среды затруднительно. Поэтому в ассортименте топлив имеются сезонные бензины, предназначенные для эксплуатации в определённых климатических условиях.
От испаряемости дизельного топлива зависит обеспечение быстрой подготовки и эффективного сгорания горючей смеси. Для этого оно должно содержать лёгкие, средние и тяжёлые фракции нефти в оптимальных соотношениях. Чем выше быстроходность двигателя, тем меньше времени отводится для подготовки рабочей смеси, тем выше должна быть испаряемость и топливо должно содержать большее количество лёгких фракций. Топливо более тяжёлого фракционного состава требует для сгорания большего количества воздуха.
Тяжёлые топлива с плохой испаряемостью снижают полноту сгорания, вызывают ухудшение топливной экономичности дизеля, повышение дымления, увеличение образования отложений в камере сгорания, повышенный износ цилиндропоршневой группы, разжижение моторного масла и образование низкотемпературных отложений. С другой стороны значительное облегчение фракционного состава при прочих равных условиях ухудшает пусковые свойства топлив, особенно при низких температурах, т.к. при увеличении количества паров на их прогрев затрачивается большое количество теплоты.