Перевод инфинитива и инфинитивных оборотов
ББК Ш 143.21 я 7
П 563
Рецензенты: Кафедра иностранных языков Липецкого эколого-гуманитарного университета, канд.пед. наук, доц.Кабакова Е.Н.;
Начальник отдела Торгово-промышленной палаты Маркова Л.Б.
П 563 Пономарева, С.А. «YOUR MAJESTY SCIENCE», учеб. пособие / С.А.Пономарева, Д.А. Малинина.– Липецк: Изд-во Лип.гос.тех.ун-т,2013.– 57 с.
ISBN – 978 - 5 – 88247 – 641 - 9
Данное учебное пособие предназначено для магистрантов технических направлений, изучающих английский язык
В пособии используются аутентичные материалы зарубежной прессы.
Цель пособия – закрепление терминологического минимума по специальности, обучение работе с научными источниками профессионально - ориентированного характера, совершенствование навыков коммуникативной направленности и преодоление языковых трудностей, характерных для научно - технической литературы.
В пособии также используются упражнения на дальнейшее совершенствование грамматических навыков.
Печатается по решению редакционно-издательского совета ЛГТУ
ISBN – 978 - 5 – 88247 – 641 - 9
© ФГБОУ ВПО «Липецкий государственный технический университет», 2013
© Пономарева С.А., Малинина Д.А.,2013
UNIT ONE
ПЕРЕВОД ИНФИНИТИВА И ИНФИНИТИВНЫХ ОБОРОТОВ
I Формы Инфинитива
ACTIVE | PASSIVE | |
Indefinite | (to) design | (to) be designed |
Perfect | (to) have designed | (to) have been designed |
Continuous | (to) be designing | - |
Prefect Сontinuous | (to) have been designing | - |
1. He tried to find the right answer.Он пытался найти правильный ответ.
2. They must have been waiting too long.Должно быть, они ждут уже давно.
3. He couldn’t have done it.Не может быть, что он так поступил.
4. He must be working now.Должно быть, он сейчас работает.
5. Everybody hates to be lied to.Никому не нравится, когда им лгут.
The manuscript seems to have been written in the 12th century.
Рукопись, по всей видимости, относится к 12 веку.
II Функции инфинитива в предложении
В предложении инфинитив может выполнять следующие функции:
1. Подлежащее:They arranged to visit the laboratory the next day.
2. Предикатив (именная часть составного сказуемого):All I want to do is to helpyou.
3. Сказуемое в односоставных предложениях (использование структурно ограничено. Инфинитив без частицы to употребляется в вопросительных предложениях после why):Why waste your time on this kind of work? Why not go there right away?
Translate into Russian paying attention to the Infinitive.
a. I can’t afford to go out.
b. We expect to see you soon.
c. Let’s arrange to meet again next week.
d. Are you prepared to risk your life for this?
e. The aim is not to win, but to enjoy yourself.
f. The police appear to be chasing someone.
g. I’d like everyone to help us.
h. Since we saw him last, he appears to have become more responsible.
i. He always pretends not to understand, but he does.
j. I am sorry to have woken you up.
k. You need to concentrate on the road,
l. Your grandmother was sad not to see you.
m. I am so happy to be leaving school at last!
n. I can’t bear to watch this horror film any more.
o. Sam was sad to have lost the race.
p. Give a man a fish and he’ll eat for a day. Teach a man to fish and he’ll eat for a lifetime.
Translate into English using the Infinitive.
a. Если быть откровенным, финансовый кризис обнажил множество проблем.
b. Изучать точные науки необходимо.
c. Я постараюсь сделать все, что смогу.
d. Однажды ночью он проснулся и услышал легкий стук в дверь.
e. Почему бы не предпринять необходимые шаги незамедлительно?
f. Мой план заключался в том, чтобы перезагрузить компьютер и начать все сначала.
g. Он не старался найти выхода из сложившейся ситуации.
h. Не может быть, чтобы он сделал эту ошибку.
i. Он, должно быть, водит машину не первый год.
j. Наверное, она все еще ждет.
k. Кажется, ты нарушаешь скоростной режим. Притормози!
Translate the last paragraph of the article in written form.
Blacksmithing forges ahead
Blacksmithing conjures up images of hot, heavy work carried out by burly bearded Britons ages ago; not much to do with today’s world you might say. But take a closer look around you, and you’ll be amazed at the amount of ironwork you can see –
the hinges holding open the door, the hook hanging up your coat, the ornate railings you pass by every day. You may not know it, but blacksmiths created the very nails that hold the modern world together.
In its purest form, the craft consists of shaping metal using heat, a hammer and anvil. “You’re basically mucking around with its atomic structure,” says Aaron Petersen, a blacksmith, sculptor and university lecturer. On a hot Saturday in an even hotter forge in west Wales, he is teaching me the right way to pound the hell out of a piece of steel.
“When the metal is heated, the molecules loosen so it’s easier to bend; a bit like cooking,” says Petersen. But this is no ordinary kitchen: the Petersen family forge is like something from another age, with its intense fire, hundreds of hammers and tongs adorning the walls and weighty anvils which look as though they haven’t moved an inch in centuries. An iron bottom clasped by an iron hand completes the scene.
This morning we are cooking up mild steel to fashion into a decorative candlestick, which will hopefully take pride of place on the family mantelpiece. “The temperature should be from 1,000C-1,300C and a good welding heat is a yellow
one,” says Petersen, which means steel-capped boots and goggles are a must for this line of work. And then the clanging begins: we begin by “drawing down” the steel rods, pounding it with a hammer to “upset” or reduce the thickness of the metal, and “drawing it to a point”.
“It’s an antidote to our computer-bound lives,” says Petersen. It’s incredibly hot and dirty work too. “The great thing is that it’s an immediate process,” he says. “The metal shapes quickly in smithing, as opposed to something like pottery which involves several stages of firing and drying before you see the result.”
Students on his weekend course, which is geared towards mastering basic smithing skills, have ranged from artists to stressed-out executives. “A lot of wives send their husbands. Some are spurred to take it up professionally – not everyone is cut out to be a hedge fund manager,” says Petersen. Everyone comes away with their own finished pieces, be they bespoke tools, nails, decorative artwork or doorknockers. Others renovating their homes come to work on specific items.
The Economist
2. Write an essay answering the question: ‘Will blacksmiths actually be needed in the future?’
UNIT TWO
Инфинитивные обороты
1. Оборот «Сложное дополнение» встречается обычно после глаголов, выражающих физическое восприятие, умственное восприятие, желание приказание, просьбу: to hear, to see, to feel, to watch, to wish, to lie, to want, to mean, to admit, to order etc.
a. I saw him run.Я видел, как он побежал.
b. I heard her speakon the radio. Я слышал ее выступление по радио.
c. The teacher wants us to study well. Преподаватель хочет, чтобы мы учились хорошо.
PRACTICE
Новая концепция.
Компания Rasselstein GmbH известна как единственный производитель белой жести в Германии. В настоящее время она продвигает новые упаковочные концепции. Сообщают, что CosmoCan ® является инновационной концепцией для нового вида упаковки из жести.
Говорят, что технология CosmoCan ® с успехом находит свое применение: она может быть использована для аэрозольных продуктов, таких как лаки для волос и дезодоранты, а также напитки и продукты питания.
Как полагают, новая концепция производства даст возможность уменьшить толщину банки. Экономия материала, безусловно, будет способствовать сокращению производственных затрат. Лазерная технология также позволяет производить банки и тубы диаметром менее 10 мм, что, со всей вероятностью, откроет совершенно новые возможности для использования жести.
Стал возможным индивидуальный дизайн упаковки, так как при изготовлении банки используют гидравлический процесс формовки. Новая технология позволяет изготовлять банки необычной формы, что, наверняка, привлечет внимание потребителя.
SELF-ASSESSMENT II 1. Translate the article using a dictionary.
Man of Steel’s Industrial Web, Mirroring NatureROXY PAINE’S stainless-steel Dendroid sculptures seem to be straightforward enough at first, clearly recognizable as treelike forms. But they always manage to veer into ambiguous territory.
“Maelstrom,” for example, displayed on the roof of the Metropolitan Museum of Art last year, posed as a mass of fallen trees in the aftermath of a storm. Yet its branches were supposed to exhibit decidedly unbranchlike behavior: fusing and connecting in the manner of neuron paths or pulses of energy. Mr. Paine’s Dendroids are never really just about trees.
“Distillation” is considered to be the most complex and immersive structure in his series of 22 Dendroids. It is now barreling through the James Cohan Gallery in New York. Here Mr. Paine pushes the metaphoric content that underpins these sculptures to new extremes. It still uses arboreal forms, but they now mesh with other overtly defined branching systems: a vascular network of arteries and veins with two plump kidneys, mushroom colonies and their germinating mycelia, neuron bundles
and taxonomic diagrams, and raw pipelines connected to steel tanks and industrial valves.
Each one of his Dendroids is known to be made from standard industrial piping
- the kind typically used by the pharmaceutical industry and nuclear power plants - that Mr. Paine bends, welds, grinds and polishes to turn them into seamless organic forms. They mirror nature but are sure to retain their gleaming industrial artifice. That dichotomy reflects the artist’s ambivalent feelings about tampering with nature.
Like his work Mr. Paine, 44, is also said to straddle worlds. He and his family split their time between an apartment in Williamsburg, Brooklyn, and their home in rural Treadwell. In the country, he has converted a barn into a full-production metalworking shop that’s staffed by about a half-dozen assistants.
Disassembled Dendroids awaiting future installation are splayed out in the surrounding fields, their antlerlike steel components blinding in a strong sun, and beautifully moody in cloudy light. His “100 Foot Line,” scheduled to be installed this month at the National Gallery of Canada in Ottawa, is a single tree trunk that tapers to a simple point; it is the antithesis of “Distillation.”
The Economist
UNIT THREE
PRACTICE
Computer mice for the blind
(1) Computers have become such an integral part of life, in the rich world at least, that even social networking is done online. The blind, however, are often excluded from such
kind of interacting. Now a system has been developed to make navigating the internet
easier for blind people. It also allows using word-processing software and even tracing the shapes of graphs and charts. Its inventors hope it will enable more blind people to work in offices.
(2) The system developed by staff at Tactile World, an Israeli company, uses a device that looks similar to a conventional computer mouse. On its top, however, it has two pads, each with 16 pins arranged in a four-by-four array. Software supplied with the mouse translates text displayed on the screen into Braille.
(3) In traditional Braille, numbers and letters are represented by raised bumps in the paper of the page being read. The pins on the mouse take the role of these bumps. As the cursor controlled by the mouse is moved across the screen, the pins rise and fall to represent the text across which they are moving. One pad represents the character under the cursor, the other gives the reader information about what is coming next, such as whether it is a letter or the end of the word. This advance information makes interpretation easier. As the user reads the text, the system also announces the presence of links to other websites. And the user can opt, if he wishes, to have the computer read the whole text out loud.
(4) The mouse’s software has an “anchor” feature, to hold onto the line of text that is being read. Alternatively, a user can click a button on the mouse and the text will scroll along and run under his fingers without him having to move the device.
(5) When he encounters a graph, map or other such figure, the pins rise when the mouse is on a line. The number of pins raised reflects the thickness of the line. If he strays from the line, the pins fall. He is thus able to trace, say, the curve of a graph or the border of a country. Interpreting more complex diagrams is also possible. Dark areas of maps, for example, can be represented by raising all the pins, while light areas are places where all the pins are dropped.
The Economist
UNIT FOUR
Объектный предикатив.
a.после глаголов to catch, to discover, to feel, to find, to hear, to imagine, to keep, to leave, to like/dislike, to notice, to see, to send, to set, to stop, to watch:The news set me thinking.
b. после глаголов to consider, to explain, to guarantee, to mention, to regard, to speak of, to take, to think of, to treat, to understand, если за ними следует as: They thought of him as beinga prominent scientist.
7.Обстоятельство (с предлогом):She was tired after reading. She found herself much recovered upon waking.
8.Определение (обычно вводится предлогами of, in, for, at, about, to):I began to have a feeling of being watched.
9. Вводные словосочетания: generally speaking, roughly speaking, strictly speaking etc. Strictly speaking, their presence is not necessary.
PRACTICE
Fields of automation
Metal, heal thyself
A way for the damaged surfaces of metals to repair themselves has been devisedSadly for engineers, inanimate objects cannot yet repair themselves. But scientists have invented a way of healing damaged metals.
The surfaces of many metal objects are coated with other metals for protection. Iron, for instance, is frequently galvanized with zinc. The basic idea of the new technology is to infiltrate this coating with tiny,
fluid-filled capsules. When the metal coating is punctured or scratched, the capsules in the damaged area burst and ooze restorative liquids, in the form of compounds called trivalent chromates. These react with nearby metal atoms and form tough, protective films a few molecules thick to ameliorate the damage.
The idea of doing this has been around for years, but it has proved difficult in practice because the capsules used were too big. Surface coatings tend to be about 20 microns thick. The capsules were 10-15 microns across - large enough to disrupt the coatings, and thus do more harm than good. The trick worked out by scientists is how to create capsules a few hundredths of this size.
The capsules researchers have come up with are made by mixing
butylcyanoacrylate, a chemical found in superglue, with an oil carrying the healing compounds. This mixture is then, itself, mixed with dilute hydrochloric acid. The result is an emulsion of droplets between 100 and 300 nanometers across. Each droplet has an oil core surrounded by a thin layer of butylcyanoacrylate molecules. To make the droplets stable, phosphate is added to the emulsion. This triggers the polymerization of the butylcyanoacrylate into a tough plastic, which forms the outside of the capsule.
The greatest challenge, however, was not making the capsules in the first place, but stabilizing them during the plating process. Though galvanization is often done by dipping steel in liquid zinc, it is sometimes done by electrolysis - and nickel and copper plating are normally done this way. The capsules, though, tend to stick together in the liquids used as electrolytes during electroplating, and are also destroyed by the extreme acidity or alkalinity that is often involved in the process. To overcome these problems special detergents that stick to polybutylcyanoacrylate were used, and thus both stop the capsules sticking together and protect them from the electrolytes. The techniques were proved in electroplated layers of copper, nickel, and zinc, and self-repairing metals are believed to commonly be available in the years ahead.
The Economist
A healing balm
Self-healing substances that are capable of repairing themselves when damaged are under development
One of the differences between animals and machines is that animal bodies can repair a lot of the damage that a cruel and
hostile world inflicts on them. A machine, by contrast, has to wait for someone to come and fix it. But that may change if researchers in the field of self-repairing materials have their way. Two groups in particular - one in America and one in Britain - are trying to create composite materials that mend themselves if they get cracked, in much the same way that an animal's broken bone heals itself. The difference is that these materials will heal in minutes rather than months.
Such self-healing composites may take a while to enter everyday use. But if they can be made reliably they will be welcome in high-stress applications that are difficult to inspect regularly (the blades of wind turbines, for example) or are critical to safety (such as the doors and window-frames of aircraft).
Jeffrey Moore and his colleagues at the University of Illinois are working on the problem by adding extra components to their composites. Like most such materials, these composites consist of fibres (in this instance, carbon fibres)
embedded in a plastic matrix (an epoxy resin). The main extra component added by Dr Moore is a sprinkling of tiny capsules containing a chemical called dicyclopentadiene. If the composite cracks, the capsules near the crack break open and release the dicyclopentadiene molecules, which link together to form another type of plastic that binds the crack together and thus heals the material.
To start with, Dr Moore had to nurse this process along by adding a second extra component—a catalyst based on ruthenium. This worked well in the laboratory, but ruthenium is too expensive for mass deployment. However, when he was playing with solvents that might be added to the system to speed the transfer of the dicyclopentadiene to the cracks it is intended to heal, he found a solvent that encouraged the process to work without the ruthenium catalyst. Alas, the solvent Dr Moore hit on, chlorobenzene, is pretty nasty stuff (it is used, for example, in the manufacture of DDT). However, he has since found a suitable alternative that turns out to be even better. The chlorobenzene process restored only 80% of a material's original toughness. The new solvents restore it completely.
The Economist
PRACTICE
UNIT SIX
The Telegraph
UNIT SEVEN
Причастные обороты.
1. Конструкция «Сложное дополнение» с причастием.
In the next room I could hear them arguing heatedly. Я слышал, как они яростно спорили в соседней комнате.
I found the laboratory closed. – Я обнаружил, что лаборатория закрыта.
PRACTICE
Металл прочнее титана
Новый чудо-металл не ржавеет, и его легко можно отливать в нужную форму, словно пластмассу. Он не нуждается в машинной обработке, когда изделие отлито. Его очертания точны, а поверхность - безупречно гладкая. Если бы среди металлов выбирали "супер-героя", то все лавры, наверняка, достались бы именно этому. Так что же это за металл? По-английски он называется "ликвид- металл", от слова "жидкий". А назвали его так потому, что аморфное расположение атомов в этом металле напоминает именно жидкость. И у этого "жидкого металла" есть все шансы на то, чтобы в перспективе буквально революционизировать нашу промышленность. По-русски такие материалы называют обычно "аморфными металлическими сплавами с неупорядоченным расположением атомов в пространстве" или "металлическим стекло м".
http://anomalia.kulichki.ru/text6/189.htm
SELF-ASSESSMENT VII
UNIT EIGHT.
Дизайн вашего сада
Мы привыкли слышать новое модное слово «дизайн». Все стали часто использовать такие словосочетания, как: дизайн квартир, штор, ногтей, спальни, платья, но есть еще и такое понятие, как дизайн ландшафта. Такое красивое слово можно расшифровать как отличный впечатляющий пейзаж, который будет радовать глаз. И если вы решили превратить свою дачу в нечто необыкновенное, то стоит заняться дизайном ландшафта. Озеленение участка – это один из самых важных моментов в дизайне ландшафта. Для озеленения участка важен эдакий творческий беспорядок, который выглядит очень натуралистично и эффектно. А для придания этой самой натуралистичности все чаще стали использовать дикорастущие травы и декоративные растения, уход за которым задача не из легких.
SELF-ASSESSMENT VIII
http://promdesigns.ru/
STATE OF THE ART
UNIT NINE
Jam today
UNIT TEN
Renewable Energy
Climate change, coupled with concerns about high oil and energy prices, is driving a global trend towards the increased use of renewable energy. Unlike fossil fuels which are rapidly being depleted, renewable energy sources such as sunlight and wind are naturally replenished and therefore sustainable. (1)_____________
Most sources of renewable energy originate either directly or indirectly from the sun. For example, both wind and wave power derive their energy indirectly from the sun. When solar radiation is absorbed by the Earth it is dissipated around the globe in the form of winds and ocean currents. The wind interacts with the oceans and transfers mechanical energy to water thus creating waves. In addition, solar energy promotes evaporation of water from the oceans. (2)_________________
Furthermore, solar energy drives the photosynthesis necessary for the plants that are used to create biofuels. Currently, only about 18% of the world’s energy demand is supplied from renewable energy sources . However, there is great potential to increase this contribution. Indeed, it has been estimated that the technical potential of renewable energy is more than 18 times that of current global primary energy demand. (3)_________________________ Owing to constraints, such as economic
competitiveness, the potential that is likely to be realized in practice will be only a fraction of this value.
(4)_________________This is particularly the case with large infrastructure projects such as hydroelectric or tidal barrage schemes. To be economically viable, such projects must absorb large capital costs and still be able to compete on price with traditional sources of energy – something which in most cases it is difficult to do.
Peggy Daniels Becker, Alternative Energy
UNIT ELEVEN
A desirable solution
Biodegradable electronics for medical devices take a step closer
The idea of creating biodegradable electronics for implantation into the human body has been around for a couple of decades, but no one has yet managed to do it. However, Zhenan Bao and Christopher Bettinger, who are chemical engineers at Stanford University, have just made a start. They have created transistors from a sulphur-containing hydrocarbon called thiophene, a polyester called polylactide co- glycolide (PLGA, for short) and polyvinyl alcohol (PVA). All of these chemicals are approved by America’s Food and Drug Administration for human use.
To make their transistors, Dr Bao and Dr Bettinger chopped sheets of PLGA into 1cm squares and deposited thin silver contacts on to them. They then coated the PLGA with thiophene, which acts as a semiconductor, interspersed with PVA, which acts as an insulator. The result is a flexible transistor a few millimetres thick.
Such organic transistors are not as efficient and powerful as silicon transistors, nor are they anything like as small. But they can be manufactured cheaply. More to the point, they break down slowly in warm, salty conditions of the sort found in the body. In laboratory tests intended to mimic the body’s interior, they disappeared after 70 days, leaving behind only the wires - which, being made of silver, are not toxic.
To create working devices it will be necessary to double-check that the other ingredients are not toxic, too, despite their FDA clearance, and also to make the other components of electrical circuits, such as capacitors and resisto rs, in a similar way. Dr Bao is also investigating other compounds with potential uses in this area, such as beta-carotene (the molecule that gives carrots their colour), which she thinks might, like thiophene, act as a semiconductor. If she succeeds, it should be possible to devise electrical control circuits for instruments such as drug-delivery devices that could be implanted and then left alone to do their thing for a month or two before vanishing.
The Economist
Greener tyres
YOUR MAJESTY SCIENCE
Учебное пособие
Липецк
Липецкий государственный технический университет 2013
Учебное издание
YOUR MAJESTY SCIENCE
Редактор Р.А. Черникова
.
Подписано в печать Формат 60х84 1/16.Бумага офсетная.
Ризография Печ.л.3,5. Тираж 200 экз. Заказ № Издательство Липецкого государственного технического университета
Полиграфическое подразделение Издательства ЛГТУ.
398600 Липецк, ул. Московская, 30
С.А. Пономарева Д.А. Малинина
YOUR MAJESTY SCIENCE
Учебное пособие
Рукопись к печати утверждаю Проректор по учебной работе
Объем 3,5 п.л. _____ Ю.П. Качановский
Тираж 200 экз. «___»2013
С.А. Пономарева Д.А. Малинина
YOUR MAJESTY SCIENCE
Учебное пособие
Рукопись к печати утверждаю Заведующий кафедрой ин.яз.
Объем 3,5 п.л. _____ Н.В. Барышев
Тираж 200 экз. «___» 2013
ББК Ш 143.21 я 7
П 563
Рецензенты: Кафедра иностранных языков Липецкого эколого-гуманитарного университета, канд.пед. наук, доц.Кабакова Е.Н.;
Начальник отдела Торгово-промышленной палаты Маркова Л.Б.
П 563 Пономарева, С.А. «YOUR MAJESTY SCIENCE», учеб. пособие / С.А.Пономарева, Д.А. Малинина.– Липецк: Изд-во Лип.гос.тех.ун-т,2013.– 57 с.
ISBN – 978 - 5 – 88247 – 641 - 9
Данное учебное пособие предназначено для магистрантов технических направлений, изучающих английский язык
В пособии используются аутентичные материалы зарубежной прессы.
Цель пособия – закрепление терминологического минимума по специальности, обучение работе с научными источниками профессионально - ориентированного характера, совершенствование навыков коммуникативной направленности и преодоление языковых трудностей, характерных для научно - технической литературы.
В пособии также используются упражнения на дальнейшее совершенствование грамматических навыков.
Печатается по решению редакционно-издательского совета ЛГТУ
ISBN – 978 - 5 – 88247 – 641 - 9
© ФГБОУ ВПО «Липецкий государственный технический университет», 2013
© Пономарева С.А., Малинина Д.А.,2013
UNIT ONE
ПЕРЕВОД ИНФИНИТИВА И ИНФИНИТИВНЫХ ОБОРОТОВ
I Формы Инфинитива
ACTIVE | PASSIVE | |
Indefinite | (to) design | (to) be designed |
Perfect | (to) have designed | (to) have been designed |
Continuous | (to) be designing | - |
Prefect Сontinuous | (to) have been designing | - |
1. He tried to find the right answer.Он пытался найти правильный ответ.
2. They must have been waiting too long.Должно быть, они ждут уже давно.
3. He couldn’t have done it.Не может быть, что он так поступил.
4. He must be working now.Должно быть, он сейчас работает.
5. Everybody hates to be lied to.Никому не нравится, когда им лгут.