Рычаг, блок и наклонная плоскость 6 страница

Предположение это нуждалось в подтверждении, и Дженнерт решился на проведение эксперимента. 14 мая 1796 года, когда в окрестностях его родного местечка появилась коровья оспа, он в присутствии нескольких врачей привил оспу здоровому 8‑летнему мальчику — сделал два небольших надреза на его руке и внес в ранки вакцинный яд, взятый из правой кисти женщины, случайно заразившейся оспой от коровы при дойке. Пустулы, воспроизведенные таким образом на руке ребенка, имели большое сходство с пустулами от прививания натуральной человеческой оспы, но общее болезненное состояние было едва заметно. Через десять дней мальчик был совершенно здоров. 1 июня того же года Дженнерт взял материю из пустулы человека, заболевшего натуральной оспой, и инокулировал ею привитого мальчика. С лихорадочным нетерпением он ждал результатов своего опыта. Прошло три дня, краснота на месте прививки исчезла без малейшего следа человеческой оспы — мальчик остался здоров. Дженнерт продолжал наблюдать за ним, желая выяснить, сколь долго будет продолжаться действие прививки. Спустя несколько месяцев мальчику сделали вторую прививку натуральной оспы, через пять лет — третью. Результат остался тот же. Он оказался совершенно невосприимчивым к этой болезни.

Однако это открытие еще не означало победы над страшной заразой. Случаи коровьей оспы были очень редки, порой от одной вспышки эпидемии до другой проходило несколько лет. Если бы пришлось дожидаться каждого такого случая, чтобы получить материал для предохранительных прививок, эффективность их была бы очень невелика. Поэтому очень важна была вторая серия опытов, проведенная Дженнертом два года спустя. Весной 1798 года Дженнерт привил коровью оспу мальчику непосредственно от коровы, а затем дальше — с человека на человека (всего пять генераций). Тогда же он сделал прививку своему младшему сыну Роберту. Наблюдая всех привитых, он установил, что предохранительная сила коровьей оспы не меняется, если прививать ее от человека, переболевшего коровьей оспой, к человеку, и сохраняет свойства вакцинной лимфы, взятой непосредственно от коровы. Этим найден был способ получать материал для прививок практически в неограниченных количествах Каждый человек, которому была привита оспа, мог давать свою кровь для изготовления вакцины. Действенное средство против оспы было найдено.

В том же году Дженнерт опубликовал небольшую брошюру в 75 страниц, в которой просто и безыскусно описал свои опыты. Появление этого небольшого сочинения имело огромный резонанс. Далеко не все и не сразу приняли идею прививок. Несколько лет продолжались ожесточенные споры, но удивительные успехи вакцинации убедили вскоре даже самых непримиримых противников оспопрививания. Действительно, по сравнению с практиковавшейся прежде прививкой натуральной оспы прививка коровьей оспы обладала огромными неоспоримыми преимуществами. Ведь коровья оспа давала только местный незначительный эффект, в то время как прививка натуральной оспы вызывала общее заболевание, силу которого было невозможно предугадать. С начала XIX века прививки против оспы стали делать все большему и большему количеству людей. В странах, где было введено поголовное оспопрививание, удалось свести заболеваемость и смертность от оспы до минимальных размеров. Это была одна из самых блестящих побед, когда‑либо одержанных человеческим гением. Страшная болезнь, уносившая во времена эпидемий множество человеческих жизней, была стерта с лица земли, так что в XIX веке для большинства людей слово «оспа» стало пустым звуком.

На долю Дженнерта выпало редкое счастье — еще при жизни его заслуги получили всеобщее признание. На его глазах оспопрививание распространилось по всему миру и принесло его изобретателю громкую славу. В самых разных странах имя Дженнерта произносили с благодарностью. Он получил множество медалей и почетных дипломов, стал членом всех европейских академий. Несколько индейских племен Северной Америки прислали ему почетный пояс, а английский парламент вручил ему премию в 20 тысяч фунтов стерлингов как выражение национальной благодарности за его открытие. Его посмертная слава была не меньшей. В 1853 году при открытии памятника Дженнерту в Лондоне, принц Альберт сказал: «Ни один врач не спас жизнь такому значительному количеству людей, как этот человек».

АЭРОСТАТ

С глубокой древности люди мечтали подняться в воздух, чтобы парить там подобно птицам. Именно им они подражали в своих первых попытках оторваться от земли. Но, увы… Многочисленные опыты с искусственными крыльями давали один и тот же результат — человек не мог взлететь, как ни старался. В средние века, когда открыта была способность горячего воздуха поднимать легкие тела, появилась идея использовать его для подъема человека. Несколько остроумных конструкций аэростата были предложены разными учеными на протяжении XVI‑XVII веков. Однако реально эти идеи воплотились в жизнь только в конце XVIII века. В 1766 году Кавендиш открыл водород — газ, который в 14 раз легче воздуха. В 1781 году итальянский физик Кавелло провел опыты с мыльными пузырями, наполненными водородом — они легко уносились в высоту. Таким образом, был разработан принцип аэростата. Оставалось найти материал для его оболочки. Это удалось не сразу. Все используемые прежде ткани были или слишком тяжелы, или пропускали через себя водород. Задачу удалось разрешить парижскому профессору Шарлю, который придумал сделать оболочку из шелка, пропитанного каучуком. Но прежде, чем Шарль успел приступить к строительству аэростата, свой воздушный шар запустили братья Этьен и Жозеф Монгольфье, сыновья бумажного фабриканта из города Анонэ.

Братья Монгольфье не имели тех научных познаний, которыми обладал Шарль, но зато у них было много энтузиазма и настойчивости. Правда, их первые попытки были неудачны. Сначала они старались наполнить бумажный шар парами, потом дымом. Позже им попалось сочинение Пристлея о различных родах воздуха, в котором было много важных наблюдений о различных свойствах газов.

Вооружившись этими сведениями, Монгольфье попробовали наполнить шар водородом, но им не удалось изготовить оболочку, которая могла бы удержать этот легкий газ. К тому же водород стоил тогда довольно дорого. Оставив его, братья вернулись к своим опытам с воздухом. Они полагали, что из рубленной смеси соломы и шерсти должен образоваться при горении особый электрический пар, обладающий большой подъемной силой. Несмотря на абсурдность этого предположения, опыты с нагретым воздухом дали хороший результат. Первый шар, объемом чуть более кубического метра, после наполнения горячим воздухом поднялся на высоту 300 метров. Вдохновленные этим успехом, братья приступили к изготовлению большого аэростата объемом около 600 кубических метров и диаметром 11 метров. Его шелковую оболочку изнутри оклеили бумагой. Над нижним его отверстием была укреплена решетка из виноградных лоз, на которой размещалась жаровня.

И вот 5 июня 1783 года при большом стечении народа состоялся пробный полет этого аэростата. На жаровне был разведен костер, и влажный горячий воздух поднял шар на высоту 2000 метров. Ликованию зрителей не было предела! Этот опыт вызвал огромный интерес в Европе. Парижской Академии было доставлено о нем донесение. В нем, однако, не сообщалось, чем Монгольфье наполнили свой аэростат — это составляло тайну изобретения.

Когда Шарль узнал об успешном полете монгольфьера (так стали называть шары, наполненные горячим воздухом), он с удвоенной энергией взялся за строительство своего аэростата. Искусные механики братья Роберы помогали ему. Оболочку диаметром 3, 6 м изготовили из прорезиненного шелка. Внизу она оканчивалась шлангом с клапаном, через который ее предстояло наполнить водородом. По тем временам эта была непростая задача. Первое затруднение состояло в самом получении водорода. Для этой цели Шарль придумал следующий прибор: в бочку положили железные опилки и налили на них воды. На крышке бочки просверлили две дырки. В одну всунули кожаный рукав, соединенный с воздушным шаром, а в другую влили серной кислоты. При этом, однако, обнаружилось, что реакция идет очень бурно, вода разогревается и в виде пара увлекается вместе с водородом внутрь шара. В воде находился раствор кислоты, которая начинала разъедать оболочку. Чтобы избежать этого, Шарль придумал пропускать получаемый водород через сосуд с холодной водой. Таким образом газ охлаждался и одновременно очищался. Дело пошло успешнее, и на четвертый день работы установки шар был наполнен.

27 августа 1783 года на Марсовом поле состоялся запуск первого шарльера (так стали называть шары, наполненные водородом). Более 200 тысяч парижан присутствовало при этом небывалом зрелище. Шар стремительно взмыл вверх и через несколько минут был уже выше облаков. Но когда аэростат поднялся на высоту около 1 километра, его оболочка лопнула от расширившегося водорода и упала неподалеку от Парижа в толпу крестьян деревни Гонес, не имевших никакого понятия о причинах происходящего. Большинство из них подумали, что свалилась Луна. Когда же крестьяне увидели, что чудовище лежит совершенно спокойно, они напали на него с цепами и вилами и в короткий срок страшно искололи и разорвали остатки шара. Примчавшийся из Парижа на место падения своего аэростата Шарль нашел лишь жалкие его лохмотья. Прекрасное творение рук человеческих, на которое было израсходовано около 10 тысяч франков, погибло безвозвратно. Впрочем, если не считать этого грустного финала, в целом опыт прошел успешно.

Одним из зрителей, присутствовавших при запуске 27 августа, был Этьен Монгольфье. Он принял своеобразный вызов Шарля и 19 сентября того же года в Версале перед глазами самого короля и бесчисленной толпы любопытных вместе с братом поднял в воздух шар диаметром 12, 3 м с первыми в мире воздухоплавателями. Этой чести удостоились баран, петух и утка. Через десять минут шар плавно опустился на землю. После осмотра животных было обнаружено, что петух повредил крыло, и этого было достаточно для того, чтобы между учеными разгорелись жаркие споры о возможности жизни на больших высотах. Опасались, что живые существа могут задохнуться, если поднимутся на высоту более километра, ведь никто еще не исследовал эту таинственную атмосферу. На следующий строящийся монгольфьер король Людовик XVI приказал посадить двух преступников, находившихся в тюрьме. Но честолюбивые Пилатр де Розье и маркиз д'Арланд убедили короля, что слава первых людей‑воздухоплавателей не должна быть запятнана даже при неудачном подъеме. Эту честь король был вынужден предоставить им. 21 ноября 1783 года огромный монгольфьер высотой 21 метр с двумя смельчаками поднялся из замка Ла‑Мюэт в окрестностях Парижа и достиг высоты 1000 метров, открыв новую страницу в истории человечества. Оба аэронавта не сидели сложа руки, а поддерживали огонь на решетке в нижней части оболочки. Полет продолжался около 45 минут и закончился плавным спуском за городом на расстоянии 9 километров от места старта.

Однако профессор Шарль и братья Роберы тоже не теряли времени даром. Объявив подписку, они собрали 10 тысяч франков на изготовление нового шарльера для подъема двух человек. При конструировании своего второго аэростата Шарль придумал почти все снаряжение, которым пользуются воздухоплаватели по сей день. Оболочку диаметром 8 метров за три дня наполнили водородом, и 1 декабря 1783 года Шарль с одним из братьев Роберов, несмотря на грозившее им до последнего момента запрещение короля, вошли в подвешенную под шаром гондолу и попросили Этьена Монгольфье перерезать веревку, удерживающую шар. Полет продолжался 2 часа 5 минут на высоте 400 метров. После приземления Шарль решил продолжать полет один. Облегченный (без Робера) шар взмыл на высоту 3000 метров. Через полчаса полета, выпустив часть водорода, Шарль совершил мягкую посадку. Выходя из гондолы, он поклялся «никогда больше не подвергать себя опасностям таких путешествий». Любопытно, что его соперники пришли к такому же решению. Этьен Монгольфье вообще ни разу за свою жизнь не поднялся в воздух, а его брат Жозеф решился на это только раз. (Этот полет состоялся 5 января 1784 года, на монгольфьере находились, кроме Жозефа, Пилатр де Розье и еще пять человек. Шар был перегружен, и полет окончился не так удачно, как предыдущие; больше всех пострадал от падения сам создатель аэростата.) Однако пример первых воздухоплавателей оказался очень заразителен. Во многих странах Европы энтузиасты стали с увлечением строить аэростаты и отважно подниматься на них в воздух. В январе 1785 года знаменитый впоследствии аэронавт Бланшар перелетел через Ла‑Манш из Англии во Францию, открыв таким образом эпоху воздушных путешествий.

Все позднейшие воздушные шары очень мало отличались от тех, что придумали Монгольфье и Шарль. Вообще, хотя братья Монгольфье первыми изготовили аэростат, настоящим его создателем следует считать все‑таки Шарля, так как именно его конструкция оказалась наиболее практичной и удобной. Кроме того, Шарль изобрел веревочную сеть, охватывающую шар и передающую на него весовые нагрузки, изобрел клапан и воздушный якорь, первый применил песок в качестве балласта и приспособил барометр для определения высоты.

Последующие аэронавты не прибавили ничего существенного к созданной им модели аэростата. Подобно Шарлю, они по сей день пользуются для заполнения шара дешевым водородом. Он взрывоопасен, однако имеет невысокую цену и обладает наибольшей подъемной силой (1 кубический метр создает подъемную силу 1, 2 кг). Гелий, который в 40‑50 раз дороже водорода, создает подъемную силу в 1, 05 кг. Нагретый же до 100 градусов воздух имеет подъемную силу всего 0, 33 кг. Поэтому монгольфьеры при одной грузоподъемности с шарльерами имеют объем в 3‑4 раза больше, кроме того, они должны нести топливо для горелки. Большая площадь поверхности монгольфьера способствует огромной потере тепла.

Полет любого аэростата подчиняется закону Архимеда — подъемная сила несущего газа, заполняющего оболочку, есть разница между весом воздуха, вытесненного оболочкой, и весом несущего газа. Чем меньше удельный вес газа, то есть чем он легче, тем большей подъемной силой обладает аэростат. (Из этого видно, что наибольшей подъемной силой обладал бы аэростат, имеющий внутри своей оболочки вакуум. Впервые идею такого аэростата предложил в 1670 году монах де Лана Терци. Эта идея до сих пор не осуществлена, но если бы удалось преодолеть атмосферное давление, которое будет сжимать шар с силой 10 тонн на каждый квадратный метр, она вполне могла бы дать свои результаты.)

На большой высоте, где давление воздуха меньше, газ внутри оболочки начинает расширяться, распирать оболочку и в конце концов разрывает ее. Во избежание этого первые воздухоплаватели были вынуждены оставлять открытой трубку, через которую происходило заполнение шара водородом (аппендикс). Поднимаясь, аэростат «выдавливал» из себя через аппендикс избыток газа. Оболочке вследствие этого уже не грозил разрыв, но с утечкой газа уменьшалась подъемная сила аэростата. Приходилось облегчать гондолу, сбрасывая балласт.

Посадка аэростата всегда была опасным делом. Чтобы сделать ее менее рискованной, Шарль снабдил свой шар несколькими защитными приспособлениями. На экстренный случай он предусмотрел разрывное устройство, служившее для быстрого выпускания газа. Обычно, желая опуститься, аэронавт выпускал газ понемногу через специальный клапан, но при ветреной погоде существовала большая опасность, что шар с гондолой будет волочиться по земле, поэтому перед касанием земли пассажиры, потянув веревку, открывали большое отверстие для выхода газа. Для уменьшения скорости спуска применяли гайдроп — толстый канат длиной 60‑100 метров, который сбрасывали перед приземлением. При касании гайдропом земли вес аэростата уменьшался на вес гайдропа, находящегося на земле, и спуск несколько замедлялся. Маневрируя балластом, газовым клапаном и гайдропом, опытные воздухоплаватели могли довольно успешно регулировать высоту полета, взлетать и приземляться. Что касается направления полета, то тут аэронавт был в полной власти воздушных течений. Все попытки управлять полетом воздушного шара с помощью крыльев, весел или винтов, приводимых в действие человеком, оказались неэффективными.

Во многом вследствие этого практическая польза от воздухоплавания, учитывая колоссальные затраты на него (особенно в эпоху увлечения дирижаблями, которая пришлась на первую треть XX века), всегда была ничтожна. Но не следует судить об этом замечательном завоевании человеческого ума только с точки зрения практической выгоды. Аэростат впервые дал людям возможность оторваться от земли и взмыть под облака, подобно птице; он удовлетворил многовековую мечту человека о полете. Поэтому его создание должно быть поставлено в ряд величайших человеческих изобретений.

ПАРОВАЯ МАШИНА

Вплоть до второй половины XVIII века люди использовали для нужд производства в основном водяные двигатели. Так как передавать механическое движение от водяного колеса на большие расстояния невозможно, все фабрики приходилось строить на берегах рек, что не всегда было удобно. Кроме того, для эффективной работы такого двигателя часто требовались дорогостоящие подготовительные работы (устройство прудов, строительство плотин и тому подобное). Были у водяных колес и другие недостатки: они имели малую мощность, работа их зависела от времени года и с трудом поддавалась регулировке. Постепенно стала остро ощущаться нужда в принципиально новом двигателе: мощном, дешевом, автономном и легкоуправляемом. Именно таким двигателем на целое столетие стала для человека паровая машина.

Идея парового двигателя была отчасти подсказана его изобретателям конструкцией поршневого водяного насоса, который был известен еще во времена античности.

Принцип его работы был очень прост: при подъеме поршня вверх вода засасывалась в цилиндр через клапан в его дне. Боковой клапан, соединявший цилиндр с водоподъемной трубой, в это время был закрыт, так как вода из этой трубы так же стремилась войти внутрь цилиндра и тем самым закрывала этот клапан. При опускании поршня он начинал давить на воду в цилиндре, благодаря чему закрывался нижний клапан и открывался боковой. В это время вода из цилиндра подавалась вверх по водоподъемной трубе. В поршневом насосе работа, получаемая извне, расходовалась на продвижение жидкости через цилиндр насоса. Изобретатели паровой машины старались использовать ту же конструкцию, но только в обратном направлении. Цилиндр с поршнем лежит в основе всех паровых поршневых двигателей. Первые паровые машины, впрочем, были не столько двигателями, сколько паровыми насосами, используемыми для откачки воды из глубоких шахт. Принцип их действия основывался на том, что после своего охлаждения и конденсации в воду пар занимал пространство в 170 раз меньше, чем в разогретом состоянии. Если вытеснить из сосуда воздух разогретым паром, закрыть его, а потом охладить пар, давление внутри сосуда будет значительно меньше, чем снаружи. Внешнее атмосферное давление будет сжимать такой сосуд, и если в него поместить поршень, он будет двигаться внутрь с тем большей силой, чем больше его площадь.

Впервые модель такой машины была предложена в 1690 году Папеном. В 1702 году создал свой насос Севери. Но наиболее широко применялась в первой половине XVIII века паровая машина Ньюкомена, созданная в 1711 году.

Паровой цилиндр помещался у Ньюкомена над паровым котлом. Поршневой шток (стержень, соединенный с поршнем) был соединен гибкой связью с концом балансира. С другим концом балансира был соединен шток насоса. Поршень поднимался в верхнее положение под действием противовеса, прикрепленного к противоположному концу балансира. Кроме того, движению поршня вверх помогал пар, запускаемый в это время в цилиндр. Когда поршень находился в крайнем верхнем положении, закрывали кран, впускавший пар из котла в цилиндр, и вбрызгивали в цилиндр воду. Под действием этой воды пар в цилиндре быстро охлаждался, конденсировался, и давление в цилиндре падало. Вследствие создавшейся разницы давлений внутри цилиндра и вне его, силой атмосферного давления поршень двигался вниз, совершая при этом полезную работу — приводил в движение балансир, который двигал шток насоса. Таким образом, полезная работа выполнялась только при движении поршня вниз. Затем снова запускали пар в цилиндр. Поршень опять поднимался вверх, и весь цилиндр наполнялся паром. Когда снова вбрызгивали воду, пар снова конденсировался, после чего поршень совершал новое полезное движение вниз, и так далее. Фактически в машине Ньюкомена работу совершало атмосферное давление, а пар служил только для создания разряженного пространства.

В свете дальнейшего развития парового двигателя становится ясным основной недостаток машины Ньюкомена — рабочий цилиндр в ней являлся в то же время и конденсатором. Из‑за этого приходилось поочередно то охлаждать, то нагревать цилиндр, и расход топлива оказывался очень велик. Бывали случаи, когда при машине находилось 50 лошадей, едва успевавших подвозить необходимое топливо. Коэффициент полезного действия (КПД) этой машины едва ли превышал 1%. Другими словами, 99% всей теплотворной энергии терялось бесплодно. Тем не менее эта машина получила в Англии распространение, особенно на шахтах, где уголь был дешевый. Последующие изобретатели внесли несколько усовершенствований в насос Ньюкомена. В частности, в 1718 году Бейтон придумал самодействующий распределительный механизм, который автоматически включал или отключал пар и впускал воду. Он же дополнил паровой котел предохранительным клапаном.

Но принципиальная схема машины Ньюкомена оставалась неизменна на протяжении 50 лет, пока ее усовершенствованием не занялся механик университета в Глазго Джемс Уатт. В 1763‑1764 годах ему пришлось чинить принадлежавший университету образец машины Ньюкомена. Уатт изготовил небольшую ее модель и принялся изучать ее действие. При этом он мог использовать некоторые приборы, принадлежавшие университету, и пользовался советами профессоров. Все это позволило ему взглянуть на проблему шире, чем смотрели на нее многие механики до него, и он смог создать гораздо более совершенную паровую машину.

Работая с моделью, Уатт обнаружил, что при запускании пара в охлажденный цилиндр он в значительном количестве конденсировался на его стенках. Уатту сразу стало ясно, что для более экономичной работы двигателя целесообразнее держать цилиндр постоянно нагретым. Но как в этом случае конденсировать пар? Несколько недель он раздумывал, как разрешить эту задачу, и наконец сообразил, что охлаждение пара должно происходить в отдельном цилиндре, соединенном с главным короткой трубкой. Сам Уатт вспоминал, что однажды во время вечерней прогулки он проходил мимо прачечной и тут при виде облаков пара, вырывавшихся из окошка, он догадался, что пар, будучи телом упругим, должен устремляться в разряженное пространство. Как раз тогда ему пришла мысль, что машину Ньюкомена надо дополнить отдельным сосудом для конденсации пара. Простой насос, приводимый в движение самой машиной, мог удалять из конденсатора воздух и воду, так что при каждом ходе машины там бы могло создаваться разряженное пространство.

Вслед за тем Уатт внес еще несколько усовершенствований, в результате чего машина приняла следующий вид. К обеим сторонам цилиндра были подведены трубки: через нижнюю пар поступал внутрь из парового котла, через верхнюю отводился в конденсатор. Конденсатор представлял собой две жестяные трубки, стоявшие вертикально и сообщавшиеся между собой вверху короткой горизонтальной трубкой с отверстием, перекрывавшимся краном. Дно этих трубок было соединено с третьей вертикальной трубкой, которая служила воздушным отводным насосом. Трубки, составлявшие холодильник и воздушный насос, были помещены в небольшой цилиндр с холодной водой. Паровая трубка была соединена с котлом, из которого пар выпускался в цилиндр. Когда пар заполнял цилиндр, паровой кран закрывали и поднимали поршень воздушного насоса конденсатора, вследствие чего в трубках конденсатора получалось сильно разряженное пространство. Пар устремлялся в трубки и конденсировался там, а поршень поднимался вверх, увлекая за собой груз (так измеряли полезную работу поршня). Затем выпускной кран закрывали.

В 1768 году на основе этой модели на шахте горнозаводчика Ребука была построена большая машина Уатта, на изобретение которой он получил в 1769 году свой первый патент. Самым принципиальным и важным в его изобретении было разделение парового цилиндра и конденсатора, благодаря чему не затрачивалась энергия на постоянный разогрев цилиндра. Машина стала более экономичной. Ее КПД увеличился.

Несколько последующих лет Уатт упорно трудился над совершенствованием своего двигателя. При этом ему пришлось преодолеть множество затруднений как финансового, так и технического порядка. Он вошел в компанию с владельцем металлообрабатывающего завода Болтоном, который обеспечил его деньгами. Были и другие проблемы: двигатель требовал герметичности и точнейшей подгонки деталей друг к другу. Поршень и цилиндр должны были идеально подходить по своим размерам, чтобы не допускать утечки пара. Такая точность была в новинку для машиностроения тех времен, не было даже необходимых точных станков. Выточка цилиндров большого диаметра представлялась почти неразрешимой проблемой. В результате первые машины Уатта работали неудовлетворительно: из цилиндра вырывался пар, конденсаторы действовали плохо, пар свистел через отверстие, в котором двигался поршневой шток, просачивался между стенками поршня и цилиндра.

Пришлось создавать специальные станки для расточки цилиндров. (Вообще, создание паровой машины положило начало настоящей революции в станкостроении — чтобы освоить производство паровых двигателей, машиностроению пришлось подняться на качественно более высокий уровень.) Наконец все трудности были преодолены, и с 1776 года началось фабричное производство паровых машин. В машину 1776 года по сравнению с конструкцией 1765 года было внесено несколько принципиальных улучшений. Поршень помещался внутри цилиндра, окруженный паровым кожухом (рубашкой). Благодаря этому была до минимума сокращена потеря тепла. Кожух сверху был закрыт, тогда как цилиндр — открыт. Пар поступал в цилиндр из котла по боковой трубе. Цилиндр соединялся с конденсатором трубой, снабженной паровыпускным клапаном. Несколько выше этого клапана и ближе к цилиндру был размещен второй, уравновешивающий клапан. Когда оба клапана были открыты, пар, выпущенный из котла, наполнял все пространство над поршнем и под ним, вытесняя воздух по трубе в конденсатор. Когда клапаны закрывали, вся система продолжала оставаться в равновесии. Затем открывали нижний выпускной клапан, отделяющий пространство под поршнем от конденсатора. Пар из этого пространства направлялся в конденсатор, охлаждался здесь и конденсировался. При этом под поршнем создавалось разряженное пространство, и давление падало. Сверху же продолжал оказывать давление пар, поступавший из котла. Под его действием поршень спускался вниз и совершал полезную работу, которая при помощи балансира передавалась штоку насоса. После того как поршень опускался до своего крайнего нижнего положения, открывался верхний, уравновешивающий, клапан. Пар снова заполнял пространство над поршнем и под ним. Давление в цилиндре уравновешивалось. Под действием противовеса, расположенного на конце балансира, поршень свободно поднимался вверх (не выполняя при этом полезной работы). Затем весь процесс продолжался в той же последовательности. Хотя эта машина Уатта, так же как и двигатель Ньюкомена, оставалась односторонней, она имела уже важное отличие — если у Ньюкомена работу совершало атмосферное давление, то у Уатта ее совершал пар. Увеличивая давление пара, можно было увеличить мощность двигателя и таким образом влиять на его работу. Впрочем, это не устраняло основного недостатка такого типа машин — они совершали только одно рабочее движение, работали рывками и потому могли использоваться только как насосы. В 1775‑1785 годах было построено 66 таких паровых двигателей.

Для того, чтобы паровой двигатель мог приводить в действие другие машины, необходимо было, чтобы он создавал равномерное круговое движение. Принципиальное отличие такой машины состояло в том, что поршень должен был совершать два рабочих движения — и вперед и назад. Такой двигатель двойного действия был разработан Уаттом в 1782 году. Пар здесь выпускался то с одной, то с другой стороны поршня, причем пространство на стороне, противоположной впуску пара, соединялось каждый раз с конденсатором. Эта задача была разрешена с помощью остроумной системы отводных труб, закрывавшихся и открывавшихся с помощью золотника.

Золотник представлял собой задвижку, которая перемещалась перед двумя отверстиями для пропускания пара. При каждом ходе задвижки в одну или другую сторону открывалось одно отверстие и закрывалось другое, вследствие чего переменялся путь, по которому мог проходить пар. Движение золотника имело сложный характер при каждом крайнем положении, когда одно отверстие открыто, а другое закрыто, он должен был останавливаться на некоторое время, чтобы пропустить порцию пара, а среднее положение проходить как можно быстрее. Движением золотника управлял особый механизм, расположенный на валу. Главной частью в нем был эксцентрик.

Эксцентрик, изобретенный Уаттом, состоял из пластины особой формы, сидящей на оси, находящейся не в центре этой пластины, а на некотором расстоянии от него. При таком креплении на одной стороне оси находилась большая часть пластины, чем на другой. Сама пластина была охвачена кольцом, к которому крепилась тяга, движущая золотник. Во время вращения пластины ее округлость постоянно давила на новую точку внутри поверхности кольца и своей более широкой стороной приводила его в движение. Вместе с каждым поворотом вала происходил один ход золотника. Характер вращения кольца (и соответственно движение тяги) зависел от того, какой формы пластина вставлена в эксцентрик. Путем расчетов была подобрана такая форма, которая во время одного оборота обусловливала то ускорение, то замедление, то остановку золотника. Введением этого приспособления Уатт сделал работу своей машины полностью автоматической.

Наши рекомендации