From Mendeleyev to Mendelevium – and Beyond

The year 1969 marked the one hundredth anniversary of the announcement by Dmitry Mendeleyev of his formulation of a periodic classification of elements based on their atomic weights and chemical properties. It is proper1 that Russia celebrated this anniversary of the contribution2 to science of one of its sons, but at the same time it must be recognized that D. I. Mendeleyev’s accomplishment has had an impact on3 science which is international in scope.

The Periodic Law has crossed national boundaries and has become the property4of all nations.

D. I. Mendeleyev arranged all the elements in a table consisting of vertical groups and horizontal periods. In this table all the un-co-ordinated data on the properties of elements and their compounds are collected and arranged into one well-constructed system. It enables scientists to predict the possibility of discovering new elements and their properties and to correct the errors made in previous definitions of the properties of known elements. D. I. Mendeleyev’s periodic system continues to form the basis for some of the most complex research that is being done today. His name will be perpetuated5in the discovery of new artificial elements and in our better understanding of the mysteries of nature.

Примечания к тексту

1. it is proper – естественно

2. contribution – вклад

3. has had an impact on – оказало влияние на

4. property – достояние

5. perpetuate – увековечивать

VIII. Расскажите о периодической системе Менделеева, пользуясь текстами 11 A и B.

ТЕКСТЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ЧТЕНИЯ

TEXT 1

Chemistry

П.з.

Chemistry is a branch of physical science that studies the composition, structure, properties and change of matter. Chemistry includes topics such as the properties of individual atoms, how atoms form chemical bonds to create chemical compounds, the interactions of substances through intermolecular forces that give matter its general properties, and the interactions between substances through chemical reactions to form different substances.

Chemistry is sometimes called the central science because it bridges other natural sciences, including physics, geology and biology. For the differences between chemistry and physics see comparison of chemistry and physics.

The word chemistry comes from alchemy, which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism and medicine. It is often seen as linked to the quest to turn lead or another common starting material into gold, though in ancient times the study encompassed many of the questions of modern chemistry being defined as the study of the composition of waters, movement, growth, embodying, disembodying, drawing the spirits from bodies and bonding the spirits within bodies by the early 4th century Greek-Egyptian alchemist Zosimos. An alchemist was called a 'chemist' in popular speech, and later the suffix "-ry" was added to this to describe the art of the chemist as "chemistry".

The modern word alchemy in turn is derived from the Arabic word al-kīmīā (الکیمیاء). In origin, the term is borrowed from the Greek χημία or χημεία. his may have Egyptian origins since al-kīmīā is derived from the Greek χημία, which is in turn derived from the word Chemior Kimi, which is the ancient name of Egypt in Egyptian. Alternately, al-kīmī may derive from χημεία, meaning "cast together".

In retrospect, the definition of chemistry has changed over time, as new discoveries and theories add to the functionality of the science. The term "chymistry", in the view of noted scientist Robert Boyle in 1661, meant the subject of the material principles of mixed bodies. In 1663 the chemist Christopher Glaser described "chymistry" as a scientific art, by which one learns to dissolve bodies, and draw from them the different substances on their composition, and how to unite them again, and exalt them to a higher perfection.

The 1730 definition of the word "chemistry", as used by Georg Ernst Stahl, meant the art of resolving mixed, compound, or aggregate bodies into their principles; and of composing such bodies from those principles. In 1837, Jean-Baptiste Dumas considered the word "chemistry" to refer to the science concerned with the laws and effects of molecular forces. This definition further evolved until, in 1947, it came to mean the science of substances: their structure, their properties, and the reactions that change them into other substances - a characterization accepted by Linus Pauling. More recently, in 1998, Professor Raymond Chang broadened the definition of "chemistry" to mean the study of matter and the changes it undergoes.

Early civilizations, such as the Egyptians, Babylonians, Indians amassed practical knowledge concerning the arts of metallurgy, pottery and dyes, but didn't develop a systematic theory.

A basic chemical hypothesis first emerged in Classical Greece with the theory of four elements as propounded definitively by Aristotle stating that fire, air, earth and water were the fundamental elements from which everything is formed as a combination. Greek atomism dates back to 440 BC, arising in works by philosophers such as Democritus and Epicurus. In 50 BC, the Roman philosopher Lucretius expanded upon the theory in his book De rerum natura (On the Nature of Things). Unlike modern concepts of science, Greek atomism was purely philosophical in nature, with little concern for empirical observations and no concern for chemical experiments.

In the Hellenistic world the art of alchemy first proliferated, mingling magic and occultism into the study of natural substances with the ultimate goal of transmuting elements into gold and discovering the elixir of eternal life. Work, particularly the development of distillation, continued in the early Byzantine period with the most famous practitioner being the 4th century Greek-Egyptian Zosimos of Panopolis. Alchemy continued to be developed and practiced throughout the Arab world after the Muslim conquests, and from there, and from the Byzantine remnants, diffused into medieval and Renaissance Europe through Latin translations. Some influential Muslim chemists, Abū al-Rayhān al-Bīrūnī, Avicenna and Al-Kindi refuted the theories of alchemy, particularly the theory of the transmutation of metals; and al-Tusi described a version of the conservation of mass, noting that a body of matter is able to change but is not able to disappear.

TEXT 2

History of Chemistry

П.з.

The development of the modern scientific method was slow and arduous, but an early scientific method for chemistry began emerging among early Muslim chemists, beginning with the 9th century Persian or Arabian chemist Jābir ibn Hayyān (known as "Geber" in Europe), who is sometimes referred to as "the father of chemistry". He introduced a systematic and experimental approach to scientific research based in the laboratory, in contrast to the ancient Greek and Egyptian alchemists whose works were largely allegorical and often unintelligible. Under the influence of the new empirical methods propounded by Sir Francis Bacon and others, a group of chemists at Oxford, Robert Boyle, Robert Hooke and John Mayow began to reshape the old alchemical traditions into a scientific discipline. Boyle in particular is regarded as the founding father of chemistry due to his most important work, the classic chemistry text The Sceptical Chymist where the differentiation is made between the claims of alchemy and the empirical scientific discoveries of the new chemistry. He formulated Boyle's law, rejected the classical "four elements" and proposed a mechanistic alternative of atoms and chemical reactions that could be subject to rigorous experiment.

The theory of phlogiston (a substance at the root of all combustion) was propounded by the German Georg Ernst Stahl in the early 18th century and was only overturned by the end of the century by the French chemist Antoine Lavoisier, the chemical analogue of Newton in physics; who did more than any other to establish the new science on proper theoretical footing, by elucidating the principle of conservation of mass and developing a new system of chemical nomenclature used to this day.

Before his work, though, many important discoveries had been made, specifically relating to the nature of 'air' which was discovered to be composed of many different gases. The Scottish chemist Joseph Black (the first experimental chemist) and the Dutchman J. B. van Helmont discovered carbon dioxide, or what Black called 'fixed air' in 1754; Henry Cavendish discovered hydrogen and elucidated its properties and Joseph Priestley and, independently, Carl Wilhelm Scheele isolated pure oxygen.

English scientist John Dalton proposed the modern theory of atoms; that all substances are composed of indivisible 'atoms' of matter and that different atoms have varying atomic weights.

The development of the electrochemical theory of chemical combinations occurred in the early 19th century as the result of the work of two scientists in particular, J. J. Berzelius and Humphry Davy, made possible by the prior invention of the voltaic pile by Alessandro Volta. Davy discovered nine new elements including the alkali metals by extracting them from their oxides with electric current.

British William Prout first proposed ordering all the elements by their atomic weight as all atoms had a weight that was an exact multiple of the atomic weight of hydrogen. J. A. R. Newlands devised an early table of elements, which was then developed into the modern periodic table of elements in the 1860s by Dmitri Mendeleev and independently by several other scientists including Julius Lothar Meyer. The inert gases, later called the noble gases were discovered by William Ramsay in collaboration with Lord Rayleigh at the end of the century, thereby filling in the basic structure of the table.

Organic chemistry was developed by Justus von Liebig and others, following Friedrich Wöhler's synthesis of urea which proved that living organisms were, in theory, reducible to chemistry. Other crucial 19th century advances were; an understanding of valence bonding (Edward Frankland in 1852) and the application of thermodynamics to chemistry (J. W. Gibbs and Svante Arrhenius in the 1870s).

TEXT 3

Наши рекомендации