Принцип работы осциллографа

В осцилло­графе исследуемый электри­ческий сигнал подается через канал вертикаль­ного отклонения на вертикально отклоня­ющую систему ЭЛТ, а горизонтальное отклонение электронного луча трубки осуществляется напря­жением горизонтальной развертки.

ЭЛТ представляет собой вакуумную стеклянную колбу, внутри которой размещены электронная пушка, отклоняющие пластины и люминесцентный экран. Электронная пушка состоит из подогреваемого катода К, модулятора (сетки) яркости светового пятна М, электродов фокусировки и ускорения электронного луча — фокусирующего анода А1ускоряющего анода А2 и ос­новного анода А3. Яркость свечения люминофора ЭЛТ регулируется путем изменения отрицательного напряжения на модуляторе М. Напряжение на первом аноде А1 фокусирует электронный поток в узкий луч. Чтобы придать электронам скорость, необходимую для свечения люминофора, на второй анод А2 подается достаточно большое (до 2000 В) положительное напряже­ние. Для дополнительного ускорения электронов используют основной анод А3, к которому приложено высокое положительное напряжение (до 10... 15 кВ).

Из курса физики вы знакомы с устройством электрон­ной пушки, отметим лишь, что ее назначением является формирование узко­го электронного пучка, при попадании которого на люминесцентный экран на экране возникает светящееся пятно.

Упрощенно работу отклоняющих систем ЭЛТ можно пояснить следую­щим образом. Электронный пучок (луч), проходит между двумя парами вза­имно перпендикулярных металлических отклоняющих пластин: вертикально отклоняющих Y и горизонтально отклоняющих X. Если к отклоняющим пла­стинам приложить напряжение, то между ними будет существовать электри­ческое поле, которое будет вызывать отклонение электронного луча в ту или иную сторону. Когда напряжение приложено к вертикально отклоняющим пластинам, то пятно будет перемещаться по оси Y; если же напряжение при­ложено к горизонтально отклоняющим пластинам, то световое пятно на эк­ране трубки будет отклоняться вдоль оси X. Если теперь сфокусировать электронный луч так, чтобы световое пятно расположилось в центре экрана ЭЛТ, а затем к пластинам Y приложить исследуемое напряжение, а к пласти­нам X пилообразное напряжение, то под совместным воздействием двух на­пряжений луч вычертит на экране трубки осциллограмму, отражающую за­висимость входного напряжения от времени.

Канал вертикального отклонения луча служит для передачи на пластины Y ЭЛТ исследуемого сигнала uc(t), подводимого к входу Y. Канал вертикального отклонения луча содержит аттенюатор, линию задержки и усилитель Y. Аттенюатор позволяет ослабить сигнал в определенное число раз, а регулируемая линия задержки обеспечивает небольшой времен­ной сдвиг сигнала на пластинах Y ЭЛТ относительно начала развертывающе­го напряжения Ux, что важно для ждущего режима. Усилитель Y обеспечивает амплитуду сигнала на пластинах Y, достаточную для значительного отклоне­ния луча на экране даже малым исследуемым сигналом uс(t).

В свою очередь, усилитель Y канала вертикального отклонения луча со­держит входной усилитель с изменяемым коэффициентом усиления Куси парафазный (с противофазными выходными сигналами одинаковой амплиту­ды) усилитель, обеспечивающий положение светового пятна в центре экрана при отсутствии исследуемых сигналов. В канал вертикального отклонения луча может также входить калибратор амплитуды. Сигнал от калибратора поступает на вход первого усилителя для установки заданного коэффициента усиления Кус1.

Цена деления В/дел масштабной сетки на экране осциллографа без учета аттенюатора определится формулой:

принцип работы осциллографа - student2.ru

где UK — напряжение на выходе калибратора;

Кус1 — коэффициент усиления усилителя канала, при одном фиксированном положении регулировки;

nк — число делений сетки, занятое изображением калибровочного сигнала на эк­ране ЭЛТ.

Цена деления масштабной сетки с учетом коэффициента деления kд атте­нюатора сд=сkд. Если в процессе работы параметр с остается постоянным, то величина сд может быть указана на дискретном переключателе аттенюато­ра, что и делается на практике.

Основные характеристики канала вертикального отклонения:

• верхняя граничная частота (порядка 100 МГц и более);

• чувствительность Sy = kдКуcSт (Sт— чувствительность трубки); чувстви­тельность составляет около 1 мм/мВ при kд= 1;

• входное сопротивление (1... 3 МОм) и входная емкость канала (1... 5 пФ);

• погрешности измерения напряжения и интервалов времени 5...7 %.

Скакой целью во входной цепи канала вертикального отклонения включают ком­мутируемый разделительный конденсатор?

- он позволяет при необходимости исключить подачу на вход осциллографа постоянной составляющей иссле­дуемого сигнала («закрытый» вход).

^ Канал горизонтального отклонения луча служит для создания горизон­тально отклоняющего — развертывающего — напряжения Ux с помощью напряжения генератора развертки или для передачи (через аттенюатор и уси­литель) на пластины X исследуемого сигнала, подводимого к входу X.

Схема синхронизации (и запуска развертки) управляет генератором раз­вертки и обеспечивает кратность периодов сигнала и развертки. Для получе­ния неподвижного изображения начало развертки должно быть связано с одной и той же характерной точкой сигнала (фронтом, максимумом амплиту­ды и т.д.). Это достигается синхронизацией напряжения развертки с напря­жением сигнала, поэтому период развертки должен быть равен или кратен периоду исследуемого сигнала: Тразв = nТс, где n = 1, 2, 3,4, ....

Развертка — это линия, которую прочерчивает луч на экране при отсут­ствии исследуемого сигнала в результате действия только одного развертывающего напряжения.

Процесс привязки развертки к характерным точ­кам сигнала называют синхронизацией в автоколебательном режиме и запус­ком — в ждущем. Синхронизация и запуск развертки производятся специ­альным синхроимпульсом, подаваемым на генератор из устройства синхро­низации.

В осциллографе установлены два режима синхронизации: внутренняя и внешняя. При внутренней синхронизации (переключатели П1 и П2 — в по­ложении 1) синхроимпульсы вырабатываются из усиленного входного сиг­нала до его задержки. При внешней (переключатели П1 и П2 — в положении 2) — сигнал синхронизации подается от внешнего источника на специальный вход X осциллографа. Например, в стандартных генераторах импульсов вы­рабатываются синхроимпульсы, относительно которых выходной сигнал может быть сдвинут с помощью регулируемой задержки.

Схема синхронизации вырабатывает сигнал синхронизации, поступающий на генератор развертки для получения четкой, неподвижной осциллограммы. Усилитель X канала горизонтального отклонения усиливает пилообразный сиг­нал Uр генератора развертки и преобразует его в напряжение развертки Ux.

Канал горизонтального отклонения характеризуется чувствительностью и полосой пропускания, показатели которых практически раза в два меньше, чем в канале вертикального отклонения. Основной блок в канале горизон­тального отклонения — генератор развертки, работающий в непрерывном или ждущем режиме. К форме пилообразного напряжения генератора предъ­является ряд требований:

• время обратного хода луча должно быть много меньше времени прямого хода, т.е. То6р « Тпр. В противном случае часть изображения сигнала будет отсутствовать;

• напряжение развертки при прямом ходе луча должно быть линейным, иначе луч будет двигаться по экрану с различной скоростью и нарушится равномерность временного масштаба по оси X. Это может привести к иска­жению сигнала.

Канал управления яркостью (канал модуляции электронного луча по яр­кости) осциллографа предназначен для подсветки прямого хода луча. Под­светка осуществляется путем передачи с входа Z на управляющий электрод (модулятор М) ЭЛТ сигнала, модулирующего поток ее луча и, следовательно, яркость свечения люминофора. Постоянное напряжение на модуляторе ЭЛТ выбирают на уровне запирания трубки. В схему этого канала входят: атте­нюатор, схема изменения полярности и усилитель Z. Для формирования тре­буемого уровня напряжения, поступающего на модулятор, служит усилитель Z. Усилитель может иметь дополнительный вход. Это дает возможность мо­дуляции изображения по яркости внешним сигналом. Канал Z используется и для создания яркостной отметки в осциллографах с двойной разверткой, а также яркостных меток для измерения частоты и фазы.

Калибратор — генератор напряжений, формирующий периодический импульсный сигнал с известными амплитудой, длительностью и частотой для калибровки осциллографа, т. е. для обеспечения правильных измерений параметров исследуемого сигнала.

Для калибровки оси Y используют постоянные напряжения обеих поляр­ностей (иногда плавно регулируемые) и напряжения в виде меандра. Мас­штаб по оси X обычно устанавливают по синусоидальному напряжению, ста­билизированному по частоте кварцем.


Виды разверток в универсальном осциллографе


Одним из основных блоков осциллографа является ЭЛТ, выходные эле­менты которой — две пары пластин, с помощью генераторов развертки от­клоняющие луч горизонтально и вертикально. Если развертывающее напря­жение приложено к одной паре отклоняющих пластин (обычно к пластинам X), то развертку называют по форме развертывающего напряжения (нап­ример, линейной или синусоидальной). Если развертывающие напряжения приложены к отклоняющим пластинам X и Y трубки одновременно, то назва­ние развертке дается по ее форме (например, круговая или эллиптическая).

Наиболее широко используется линейная развертка, создаваемая пилообразным напряжением Up генератора развертки. В случае линейной развертки луч, двигаясь равномерно по экрану, прочерчивает прямую гори­зонтальную линию, как бы нанося на экран ось абсцисс декартовой системы координат — ось времени. В зависимости от режима работы генератора раз­вертки такую развертку подразделяют на несколько видов. Рассмотрим неко­торые из них.

Автоколебательная развертка — это развертка, при которой генератор развертки периодически запускается (автоматически) и при отсутствии сиг­нала запуска на его входе.

Ждущая развертка — развертка, при которой генератор развертки запус­кается только с помощью сигнала запуска.

Однократная развертка — развертка, с помощью которой генератор раз­вертки запускается один раз с последующей блокировкой. Однократная раз­вертка применяется для наблюдения одиночных и непериодических процес­сов, а также при фотографировании с экрана осциллографа неповторяющих­ся сигналов.

При подаче на горизонтально отклоняющие пластины напряжения uх = uр пилообразной формы, электронный сфокусированный луч под воз­действием этого напряжения перемещается слева направо на интервале Тпр (точки 0-1-2 — длительность прямого хода луча) и справа налево на ин­тервале То6р (точки 2-3 — длительность обратного хода луча). Причем ско­рость движения луча в обратном направлении много больше (обычно луч при этом гасится), чем в прямом.


принцип работы осциллографа - student2.ru

С помощью напряжения развертки, подаваемого на горизонтальные плас­тины ЭЛТ (пластины X) осциллографа, на его экране можно наблюдать ис­следуемый сигнал, поступающий на пластины У и изменяющийся во времени (развернутый во времени).

Автоколебательная (непрерывная) развертка применяется для иссле­дования периодических сигналов, а также импульсных с небольшой скважностью q = Tс/τ Она включается при внутренней синхронизации.

Н принцип работы осциллографа - student2.ru принцип работы осциллографа - student2.ru а рисунке представлены исследуемые импульсы uс длительностью τ ка­ждый, развертывающее синхронное напряжение uх и наблюдаемая осцилло­грамма (в рамке). Период повторения импульсов и период развертывающего напряжения: Тс = Тр.

С помощью автоколебательной развертки почти невозможно наблюдать непериодические сигналы и она фактически бесполезна при наблюдении пе­риодических коротких импульсных сигналов с большой скважностью q (это связано с тем, что передний и задний фронты импульса почти сливают­ся). В этих случаях используют ждущую развертку.

Х принцип работы осциллографа - student2.ru арактерный пример использования ждущей развертки в осциллографе пока­зан на следующем рисунке. Генератор развертки запускается только при поступлении им­пульсов uс. Если длительность развертки, равная t2 – t1 сопоставима с длите­льностью исследуемого импульса, то его изображение на экране достаточно де­тально.


В принцип работы осциллографа - student2.ru осциллографе в силу инерционности генератора начало ждущей раз­вертки может быть несколько задержано относительно фронта

импульса uс. Поэтому, если фронт импульса очень короткий, то он может не отобразиться на осциллограмме. Для наблюдения короткого фронта сигнал uс задерживают на τ3 во времени в канале Y с помощью линии задержки (штриховые импуль­сы uс на рис.). Наблюдаемая осциллограмма дана вместе с не задержан­ным импульсом штриховой линией (справа).

Для решения ряда измерительных задач, например измерения частоты или разности фаз, вместо пилообразного напряжения развертки (линейной развертки) используют синусоидальную развертку. Для получения синусоидальной развертки на пластины X подают напряжение, изменяющее­ся по гармоническому закону принцип работы осциллографа - student2.ru . При этом генератор линейной развертки осциллографа отключается. Положительный полупериод напряже­ния синусоидальной развертки вызывает перемещение луча от центра экрана до его правой границы и обратно; отрицательный полупериод — от центра экрана до его левой границы и обратно к центру. Скорость перемещения луча изменяется по синусоидальному закону, хотя линия развертки представляет собой горизонтальную линию.

Для получения круговой развертки на пластины Y подается синусоидальный сигнал принцип работы осциллографа - student2.ru , а на пластины X— ана­логичный по форме и амплитуде сигнал, но задержанный на четверть перио­да (по фазе на φ = 90°), т.е. принцип работы осциллографа - student2.ru . Осциллограмма круговой развертки показана на рисунке.


Под действием напряжений разверток uу и ux луч прочерчивает на экране окружность за период Т. Положение луча на экране в момент времени t = 0 отмечено точкой 0, в момент t1 — точкой 1 и т. д. Если амплитуды сигналов uу и uх не равны, то круг искажается и на экране наблюдается эллипс, т.е. возникает эллиптическая развертка. Например, при uу < uх большая ось эллип­са расположена по горизонтали, а малая по вертикали. При фазовых сдвигах, не равных 90°, также получается эллипс с наклонными осями, вырождающи­мися в прямую при нулевом фазовом сдвиге.

В современных осциллографах широко распространены генераторы двойной развертки (задерживающей и задержанной). Применение двойной развертки существенно увеличивает функциональные возможности осцилло­графа. В частности, это позволяет рассматривать отдельные участки сигнала в удобном масштабе, что повышает точность измерения.


Электронно-лучевая трубка (ЭЛТ)

Способ получения сфокусированного луча и принцип управления лучом мож­но пояснить с помощью схемы, представленной на рисунке. Как уже отмечалось, в ЭЛТ совокупность электродов К, М, А1, А2 А3 называется электронной пушкой, которая излучает узкий пучок электронов. Для этого на электроды подаются на­пряжения, примерные величины которых даны на рисунке.

Основные характеристики ЭЛТ —чувствительность, полоса пропускания, длительность послесвечения, площадь экрана.

Чувствительность трубки ST = LT/UT, где LT — отклонение луча на экране трубки под воздействием напряжения UT, приложенного к паре отклоняющих пластин Обычно SТ порядка 1 мм/B.

С увеличением частоты ис­следуемого сигнала чувстви­тельность трубки падает. Верхняя граница полосы про­пускания ЭЛТ устанавливает­ся на уровне, где чувст­вительность составляет при­мерно 0,7 от номинального значения. Для универсальных осциллографов широкого ис­пользования эта частота дос­тигает 200 МГц. В современ­ных осциллографах часто применяются многолучевые трубки, что достига­ется увеличением количества электродов. Более экономичным оказывается использование однолучевого осциллографа в режиме поочередной подачи двух сигналов на отклоняющие пластины (двухканальные осциллографы). За счет эффекта послесвечения трубки и свойств глаза на экране наблюдается одновременное изображение двух сигналов, хотя они подаются поочередно.

Один из важных параметров ЭЛТ — площадь рабочей части экрана, в пределах которой искажения осциллограммы минимальны. Для повышения эффективности использования площади экрана современные ЭЛТ имеют экран прямоугольной формы.

К световым параметрам ЭЛТ относятся:

• диаметр светового пятна, который при оптимальной яркости определяет разрешающую способность ЭЛТ;

• максимальная яркость свечения экрана — зависит от плотности электронно­го луча и регулируется изменением отрицательного напряжения на модуляторе;

• цвет свечения экрана — чаще всего используют зеленый и желтый цве­та, обеспечивающие наименьшую утомляемость глаз; для фотографирования с экрана применяют ЭЛТ с голубым свечением, к которому более чувстви­тельны фотоматериалы;

• время послесвечения — для улучшения визуального восприятия ос­циллограммы время свечения экрана должно превышать время воздействия на него электронов.

Если требуется наблюдать процессы с частотой менее 10 Гц, использу­ют экраны с послесвечением средней продолжительности до 100 мс. Для фоторегистрации более предпочтителен люминофор с малым (0,01 с) по­слесвечением. При исследовании медленно меняющихся процессов приме­няют экраны, имеющие послесвечение более 0,1 с.


Напряжение развертки при прямом ходе луча должно быть линейным, иначе появятся искажения исследуемого сигнала. Нелинейность рабочего участка развертки прямого хода луча характери­зуется коэффициентом нелинейности:


физический смысл которого поясняется рисунком ниже. Коэффициент нелинейно­сти выражает относительное изменение скорости нарастания напряжения в начале и конце рабочего хода развертки. Коэффициент нелинейности рабоче­го участка развертки не должен превышать 1 %.

П принцип работы осциллографа - student2.ru еречисленным требованиям отвечал бы идеальный генератор развертки, упрощенная структурная схема которого


Бесконечно большая емкость С заряжается током iзар от источника тока I в течение достаточно большого интервала времени Тпр, а затем в течение очень малого времени при замкнутом ключе происходит ее разряд током iраз. Время замыкания ключа соответствует времени обратного хода. Тогда напряжение развертки для рабочего участка запишется так:

принцип работы осциллографа - student2.ru

т принцип работы осциллографа - student2.ru .е. имеет место линейная зависимость.

Однако реальная схема генератора отличается (справа). Для этой схемы изменение напряжения на конденсато­ре в течение рабочего времени определяется формулой:

принцип работы осциллографа - student2.ru

где τ = RC — постоянная времени.

Разложив функцию принцип работы осциллографа - student2.ru в ряд Тейлора

принцип работы осциллографа - student2.ru

получим:

принцип работы осциллографа - student2.ru

Если ограничиться двумя членами разложения принцип работы осциллографа - student2.ru то нетрудно заметить, что в основном нелинейность напряжения генератора определяется составляющей принцип работы осциллографа - student2.ru

Следовательно, необходимо, чтобы значение принцип работы осциллографа - student2.ru , что возможно при τ » Тпр. Этот случай соответствует рабо­те на начальном участке экспоненты, т.е. на линейной части развертки. Это значит, что режим источника напря­жения Е должен приближаться к ре­жиму генератора тока.

П принцип работы осциллографа - student2.ru рактически линейную развертку на экране ЭЛТ при ограниченном уровне питающего напряжения Е можно создать в схемах интеграторов на ОУ .Поскольку в схеме в силу идеальности ОУ ток i0 = 0, находим, что

принцип работы осциллографа - student2.ru

Приравняв токи и полагая RC = τа, после несложных преобразований, получим:

принцип работы осциллографа - student2.ru

т.е., данное устройство на ОУ будет осуществлять линейное интегрирование напряжения развертки.


Двухканальные и двулучевые осциллографы


Двухканальные осциллографы имеют два идентичных канала вертикального отклонения (вход первого — Y1, второго — Y2) и электронный переключатель, который может поочередно подавать выходные сигналы ка­налов на одни и те же пластины Y. В зависимости от управления работой электронного переключателя можно реализовать следующие основные ре­жимы работы осциллографа: одноканальный (на экране виден один сигнал, подаваемый на И или Y1); поочередный (на экране видны оба сигнала за счет переключения электронного переключателя во время каждого обратного хода развертки). На основе двухканального принципа строят многоканальные ос­циллографы с числом каналов до восьми.

Двулучевые осциллографы имеют два канала У и специаль­ную двулучевую ЭЛТ, в которой есть две независимые электронные пушки и пара систем отклоняющих пластин. Горизонтальная развертка лучей общая — запускается от генератора развертки, а вертикальная — каждая от «сво­его» канала У, что позволяет наблюдать на экране осциллограммы двух сиг­налов (без их периодического прерывания, как в двухканальных). Такие ос­циллографы намного сложнее схемотехнически и дороже двуканальных.


Автоматизация процесса измерений в универсальных осциллографах


Автоматизация процесса измерений дает значительный выигрыш во вре­мени и в ряде случаев существенно повышает точность измерений. Рассмот­рим возможные пути автоматизации регулировок и отсчета показаний при проведении осциллографических измерений.

Автоматическая установка масштабов по осям Y и X.

Действие автоматической установки масштабов заключается в том, что при изменении амплитуды и длительности входного сигнала в интервале дина­мического диапазона осциллографа размеры изображения остаются постоян­ными или меняются в заданных пределах. При этом производится цифровая индикация коэффициентов отклонения и развертки либо на специальном ин­дикаторе, либо непосредственно на экране ЭЛТ.

Автоматизация регулировки яркости изображения. Регулировка яркости изображения — одна из необходимых операций при осциллографировании. Она занимает много времени, так как яркость зависит от скорости перемещения луча по экрану, связанной с видом сигнала и вели­чиной установленного масштаба. Кроме того, яркость изображения не оста­ется постоянной в пределах экрана, так как изображение сигнала содержит участки, проходимые лучом с разной скоростью. Для получения одинаковой яркости изображения на экране используется принцип автоматической моду­ляции луча ЭЛТ. Уровень общей яркости изображения устанавливается для наиболее благоприятных условий наблюдения. Отметим, что выравнивание изображения по яркости увеличивает точность измерения, особенно в случа­ях, когда сигнал имеет участки с резко отличающейся скоростью изменения напряжения (например, импульс с крутыми фронтами). Так как фокусировка луча зависит от яркости, в современных осциллографах применяют систему автофокусировки. При этом напряжение на фокусирующих электродах ЭЛТ автоматически меняется при вариации яркости луча.

Перевод аналогового входного сигнала в цифровую форму позволяет автоматизировать не только процесс регулировки, но и процесс измерения и обработки сигнала.

Наиболее просто цифровая обработка сигнала реализуется в стробоско­пических осциллографах, так как дискретизация сигнала во времени лежит в основе принципа действия стробоскопического преобразователя. В цифро­вом устройстве проводится дискретизация сигнала только по уровню, ре­зультаты преобразования обрабатываются встроенным микропроцессором или внешним компьютером.


Запоминающие осциллографы


При исследовании одиночных сигналов и периодических сигналов с большой скважностью используют запоминающие осциллографы, основой которых являются запоминающие трубки.

З принцип работы осциллографа - student2.ru апоминающие электронно-лучевые трубки содержат те же элементы, что и ЭЛТ универ­сального осциллографа, а также дополнительно оснащаются узлом памяти и системой воспроизведе­ния изображения. Узел памяти состоит из двух плоских сеточных электродов, расположенных па­раллельно экрану. Не­посредственно у экрана находится мишень, покрытая слоем диэлек­трика. Поверх мишени размещен другой электрод в виде сетки с более крупной структурой — коллектор.

Изображение записывается электронным лучом высокой энергии (запи­сывающий луч). Электроны луча оседают на мишени, причем количество заряда пропорционально току луча. При перемещении луча на мишени соз­дается потенциальный рельеф, повторяющий форму осциллограммы. После прекращения действия сигнала потенциальный рельеф мишени сохраня­ется длительное время. Наблюдать записанное изображение позволяет вос­производящая система, состоящая из подогреваемого катода К', анода А'2 и модулятора М'. Катод трубки создает поток электронов малой энергии, плотность которого регулируется модулятором М'. В результате формируется широкий расфокусированный пучок электронов, равномерно облучающий мишень. Потенциал мишени подобран таким образом, чтобы при отсутствии записанного изображения медленные электроны воспроизво­дящего пучка не могли через нее пройти. При наличии потенциального рель­ефа в этих точках мишени часть электронов проходит к экрану, вызывая его свечение. На экране появляется осциллограмма, повторяющая форму потен­циального рельефа мишени. Стирается запись путем подачи на коллектор отрицательного импульса, выравнивающего потенциал мишени.

У запоминающей трубки можно выделить три характерных режима ра­боты:

• наблюдение сигнала без записи изображения — на коллекторе неболь­шое положительное напряжение Uкол = + 50 В, на мишени нулевой потенциал Uмиш= 0, мишень прозрачна для быстролетящих электронов;

• режим записи — Uкол = + 50 В, на мишень подается положительный по­тенциал Uмиш = 30 В, и мишень становится менее прозрачна, в результате бы­стро летящие электроны выбивают вторичные электроны и создают на ми­шени положительный потенциальный рельеф, который может оставаться длительное время;

• режим воспроизведения — потенциал мишени снова становится нуле­вым Uмиш = 0, кроме тех мест, где записан рельеф; мишень облучается широ­ким потоком медленно летящих электронов с воспроизводящей системы, для этого потока мишень прозрачна только в местах рельефа, где записан сигнал.

Запоминающие ЭЛТ характеризуют следующие параметры:

• яркость свечения экрана в режиме воспроизведения — она регулируется напряжением модулятора системы воспроизведения и может быть высока, так как воспроизведение производится непрерывно;

• время воспроизведения изображения — это время в основном ограничи­вается устойчивостью потенциального рельефа к ионной бомбардировке; в современных ЭЛТ время воспроизведения может достигать десятков минут;

• время сохранения записи — оно определяется при снятом напряжении с ЭЛТ;

• скорость записи — характеризует быстродействие ЭЛТ в режиме запо­минания; определяется временем, необходимым для создания потенциально­го рельефа достаточной величины.

Современные запоминающие ЭЛТ имеют скорость записи сигналов от 2,5 до 4000 км/с.;

Наши рекомендации