Непозиционные системы счисления

Из двоичной

101,012=1*22+0*21+1*20+0*2-1+1*2-2=4+0+1+0+1/4=5,2510

Из восьмеричной

253,318=2*82+5*81+3*80+3*8-1+1*8-2 =128+40+3+3/8+1/64=171+0,375+0,015625=171,39062510

Из шестнадцатеричной

42D16=4*162+2*161+13*160=1024+32+13=106910

Из десятичной системы счисления

При переводе целых чисел из десятичной системы счисления последовательно выполняют деление этого числа и получаемых целых частных на основание выбранной системы счисления. Деление выполняют до тех пор, пока частное не будет равно нулю.

Число получают путем «сбора» остатков, начиная с конца.

В двоичную

34 / 2 = 17 (0)17 / 2 = 8 (1)8 / 2 = 4 (0)4 / 2 = 2 (0)2 / 2 = 1 (0)1 / 2 = 0 (1)

3410 = 1000102

В восьмеричную

472 / 8 = 59 (0)59 / 8 = 7 (3)7 / 8 = 0 (7)

47210 = 7308

В шестнадцатеричную

924 / 16 = 57 (12)57 / 16 = 3 (9)3 / 16 = 0 (3)

92410 = 39C16

Перевод десятичных дробей из десятичной системы счисления

Дробь в десятичной системе счисления последовательно умножают на основание выбранной системы счисления пока не получиться нулевая дробная часть или достигнута требуемая точность. При каждом последующем умножении целая часть отбрасывается. Целые части результатов и составляют новую дробь. Записываются по порядку.

В двоичную дробь

0,225 * 2 = 0,450,45 * 2 = 0,90,9 * 2 = 1,80,8 * 2 = 1,60,6 * 2 = 1,20,2 * 2 = 0,4…

0,22510 = 0,00111001…2

В восьмеричную дробь

0,225 * 8 = 1,80,8 * 8 = 6,40,4 * 8 = 3,20,2 * 8 = 1,60,6 * 8 = 4,8…

0,22510 = 0,16314…8

В шестнадцатеричную дробь

0,225 * 16 = 3,60,6 * 16 = 9,60,6 * 16 = 9,6…

0,22510 = 0,699…16

Арифметические операции в двоичной системе счисления

В двоичной системе счисления арифметические операции выполняются по тем же правилам, что и в десятичной системе счисления, т.к. они обе являются позиционными (наряду с восьмеричной, шестнадцатеричной и др.).

Сложение

Сложение одноразрядных двоичных чисел выполняется по следующим правилам:

0 + 0 = 01 + 0 = 10 + 1 = 11 + 1 = 10

В последнем случае, при сложении двух единиц, происходит переполнение младшего разряда, и единица переносится в старший разряд. Переполнение возникает в случае, если сумма равна основанию системы счисления (в данном случае это число 2) или больше его (для двоичной системы счисления это не актуально).

Сложим для примера два любых двоичных числа:

1101+ 101 ------ 10010

Вычитание

Вычитание одноразрядных двоичных чисел выполняется по следующим правилам:

0 - 0 = 01 - 0 = 10 - 1 = (заем из старшего разряда) 11 - 1 = 0

Пример:

1110- 101 ---- 1001

Умножение

Умножение одноразрядных двоичных чисел выполняется по следующим правилам:

0 * 0 = 01 * 0 = 00 * 1 = 01 * 1 = 1

Пример:

1110* 10------+ 0000 1110 ------ 11100

Деление

Деление выполняется так же как в десятичной системе счисления:

1110 | 10 |----10 | 111---- 11 10---- 10 10---- 0

Непозиционные системы счисления

Самое главное, что нужно знать о системе счисления – её тип: аддитивная или мультипликативная. В первом типе каждая цифра имеет своё значение, и для прочтения числа нужно сложить все значения использованных цифр:

XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10–1+10 = 219;

Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе:

Непозиционные системы счисления - student2.ru

(иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5)

Здесь дважды использован иероглиф “2”, и в каждом случае он принимал разные значения “2000” и “20”.

2´ 1000 + 4´ 100+2´ 10+5 = 2425

Для аддитивной (“добавительной”) системы нужно знать все цифры-символы с их значениями (их бывает до 4-5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5–1) = 4; VI = (5+1) = 6).

Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления – десятичная. Сколько есть чисел, столько же может быть и оснований систем счисления.

Но используются только самые удобные основания систем счисления. Почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. История человечества знает примеры пятеричных систем счисления. “А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам. Очень интересно понятие “дюжина”. Всем известно, что это 12, но откуда появилось такое число – мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги.

А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему.

В разных цивилизациях считали по–разному, но и сейчас можно даже в языке, в названиях и изображениях цифр найти остатки совсем других систем счисления, когда–то использовавшихся этим народом.

Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как “четырежды двадцать”.

Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X – это две таких же руки.

Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Единичная система счисления

Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.

Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав. Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система

В Древнем Египте использовались специальные символы (цифры) для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Вот некоторые из них: Непозиционные системы счисления - student2.ru

Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.

Числа в древнеегипетской системе счисления записывались, как комбинация этих символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345: Непозиционные системы счисления - student2.ru

Вавилонская шестидесятеричная система

В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:
Непозиционные системы счисления - student2.ru

Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92:
Непозиционные системы счисления - student2.ru

Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
Непозиционные системы счисления - student2.ru

Теперь число 3632 следует записывать, как:
Непозиционные системы счисления - student2.ru

Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.

Римская система

Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр. Методы определения значения числа:

1. Значение числа равно сумме значений его цифр. Например, число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2=32

2. Если слева от большей цифры стоит меньшая, то значение равно разности между большей и меньшей цифрами. При этом, левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из «младших» может стоять только X(10), перед D(500) и M(1000) — только C(100), перед V(5) — только I(1); число 444 в рассматриваемой системе счисления будет записано в виде CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.

3. Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.

Помимо цифирных, существуют и буквенные (алфавитные) системы счисления, вот некоторые из них:
1) Славянская
2) Греческая (ионийская)

Наши рекомендации