Materials science and technology
I. Text A: «Materials science and technology»,
Text B: «Mechanical Properties of Materials».
II. Famous people of science and technology: Igor Sikorskly, Andrey Tupolev.
Text A: «MECHANICAL PROPERTIES Of MATERIALS»
Materials Science and Technology is the study of materials and how they can be fabricatedto meet the needsof modern technology. Using the laboratorytechniquesand knowledge of physics, chemistry, and metallurgy, scientists are finding new ways of using metals, plastics and other materials.
Engineers must know how materialsrespond to external forces, such astension, compression, torsion, bending, and shear. All materials respond to these forces by elastic deformation. That is, the materials return their original size and form when theexternal force disappears. The materials may also havepermanent deformation or they mayfracture. The results of external forces arecreep andfatigue.
Compression isa pressure causing adecrease in volume. When a material is subjected to abending, shearing, or torsion (twisting) force, both tensile and compressive forces aresimultaneously at work. When a metal bar is bent, one side of it is stretched and subjected to a tensional force, and the other side is compressed.
Tension is a pulling force; for example, the force in a cable holding a weight. Under tension, a material usuallystretches, returning to its original length if the force does notexceed the material'selastic limit. Under larger tensions, the material does not returncompletely to its original condition, and under greater forces the materialruptures.
Fatigue is the growth of cracks under stress. It occurs when a mechanical part is subjected to a repeated or cyclic stress, such as vibration. Even when the maximum stress never exceeds the elastic limit, failure of the material can occur even after a short time. No deformation is seen during fatigue, but small localized cracks develop and propagate through the material until the remaining cross-sectional area cannot support the maximum stress of the cyclic force. Knowledge of tensile stress, elastic limits, and the resistance of materials to creep and fatigue are of basic importance in engineering.
Creep is a slow, permanent deformation that results from a steady force acting on a material. Materials at high temperatures usually suffer from this deformation. The gradualloosening of bolts and the deformation of components of machines and engines are all the examples of creep. In many cases the slow deformation stops because deformationeliminates the force causing the creep. Creepextended over a long time finally leads to the rupture of the material.
Vocabulary
bar— брусок, прут
completely — полностью, совершенно
compression — сжатие
creep — ползучесть
cross-sectional area — площадь поперечного сечения
cyclic stress — циклическое напряжение
decrease — уменьшение
elastic deformation — упругая деформация
elastic limit — предел упругости
exceed — превышать
external forces — внешние силы
fatigue — усталость металла
fracture — перелом, излом
loosen — ослаблять, расшатывать
permanent deformation — постоянная деформация
remaining — оставшийся
shear — срез
simultaneously — одновременно
to stretch — растягивать
technique — методы
tension — напряженность
to propagate — распространяться
to bend — гнуть, согнуть
to extend — расширять, продолжаться
to meet the needs — отвечать требованиям
to occur — происходить
to respond — отвечать реагировать
to suffer — страдать
torsion — кручение
twisting — закручивание, изгиб
volume — объем, количество
rupture — разрыв
General understanding:
1. What are the external forces causing the elastic deformation of materials? Describe those forces that change the form and size of materials.
2. What are the results of external forces?
3. What kinds of deformation are the combinations of tension and compression?
4. What is the result of tension? What happens if the elastic limit of material is exceeded under tension?
5. What do we call fatigue? When does it occur? What are the results of fatigue?
6. What do we call creep? When does this type of permanent deformation take place? What are the results of creep?
Exercise 3.1. Find the following in the text:
1. отвечать требованиям современной технологии
2. используя лабораторные методы
3. новые способы использования металлов
4. сжатие, растяжение, изгиб, кручение, срез
5. возвращать первоначальный размер и форму
6. внешняя сила
7. постоянная деформация
8. уменьшение объема
9. растягивающие и сжимающие силы
10. превышать предел упругости материала
11. повторяющиеся циклические напряжения
12. разрушение материала
13. развитие и распространение мелких трещин
14. сопротивление материалов ползучести и усталости
Exercise 3.2. Translate into English the following sentences:
1. Упругая деформация — это реакция всех материалов на внешние силы, такие, как растяжение, сжатие, скручивание, изгиб и срез.
2. Усталость и ползучесть материалов являются результатом внешних сил.
3. Внешние силы вызывают постоянную деформацию и разрушение материала.
4. Растягивающие и сжимающие силы работают одновременно, когда мы изгибаем или скручиваем материал.
5. Растяжение материала выше предела его упругости дает постоянную деформацию или разрушение.
6. Когда деталь работает долгое время под циклическими напряжениями, в ней появляются небольшие растущие трещины из-за усталости металла.
7. Ползучесть — это медленное изменение размера детали под напряжением.
Text В: «Mechanical Properties of Materials»
Density (specific weight) is theamount of mass in a unitvolume. It is measured in kilograms per cubic metre. The density of water is 1000 kg/ m3 but most materials have a higher density andsink in water. Aluminium alloys, with typical densities around 2800 kg/ m3 are considerably less dense than steels, which have typical densities around 7800 kg/ m3. Density is important in any application where the material must not be heavy.
Stiffness (rigidity) is a measure of the resistance to deformation such as stretching or bending. The Young modulus is a measure of the resistance to simple stretching or compression. It is the ratio of the applied force per unit area (stress) to the fractional elastic deformation (strain). Stiffness is important when a rigid structure is to be made.
Strengthis the force per unit area (stress) that a material can support without failing. The units are the same as those of Stiffness, MN/m2, but in this case the deformation is irreversible. Theyield strength is the stress at which a material first deforms plastically. For a metal the yield strength may be less than the fracture strength, which is the stress at which it breaks. Many materials have a higher strength in compression than in tension.
Ductility is the ability of a material to deform without breaking. One of the great advantages of metals is theirabilityto be formed into the shape that is needed, such ascar body parts. Materials that are not ductile are brittle. Ductile materials canabsorb energy by deformation but brittle materials cannot.
Toughness is the resistance of a material to breaking when there is a crack in it. For a material of given toughness, the stress at which it will fail is inversely proportional to the square root of the size of the largest defect present. Toughness is different from strength: the toughest steels, for example, are different from the ones with highest tensile strength. Brittle materials have low toughness: glass can be broken along a chosen line by first scratching it with a diamond. Composites can be designed to have considerably greater toughness than their constituent materials. The example of a very tough composite is fiberglass that is very flexible and strong.
Creep resistance is the resistance to agradual permanent change of shape, and it becomes especially important at higher temperatures. A successful research has been made in materials for machine parts that operate at high temperatures and under high tensile forces without gradually extending, for example the parts of plane engines.
Vocabulary
ability — способность
amount — количество
absorb — поглощать
amount — количество
application — применение
brittle —хрупкий, ломкий
car body — кузов автомобиля
constituent — компонент
crack — трещина
creep resistance — устойчивость к ползучести
definition — определение
density — плотность
ductility — ковкость, эластичность
failure — повреждение
gradual — постепенный
permanent — постоянный
rigid — жесткий
to sink — тонуть
square root — квадратный корень
stiffness — жесткость
strain — нагрузка, напряжение, деформация
strength — прочность
stress — давление, напряжение
tensile strength — прочность на разрыв
toughness — прочность, стойкость
yield strength — прочность текучести
Young modulus — модуль Юнга
General understanding:
1. What is the density of a material?
2. What are the units of density? Where low density is needed?
3. What are the densities of water, aluminium and steel?
4. A measure of what properties is stiffness? When stiffness is important?
5. What is Young modulus?
6. What is strength?
7. What is yield strength? Why fracture strength is always greater than yield strength?
8. What is ductility? Give the examples of ductile materials. Give the examples of brittle materials.
8. What is toughness?
9. What properties of steel are necessary for the manufacturing of: a) springs, b) car body parts, c) bolts and nuts, d) cutting tools?
10. Where is aluminium mostly used because of its light weight?
Exercise 3.3. Find the following words and word combinations in the text:
1. количество массы в единице объема
2. килограмм на кубический метр
3. мера сопротивления деформации
4. отношение приложенной силы на единицу площади к частичной упругой деформации
5. жесткая конструкция
6. прочность на сжатие
7. способность материала деформироваться не разрушаясь
8. поглощать энергию путем деформации
9. обратно пропорционально квадрату размера дефекта
10. постепенное изменение формы
11. повышенные температуры
12. высокие растягивающие усилия
Exercise 3.4. Translate into English the following:
1. Плотность измеряется в килограммах на кубический метр.
2. Большинство материалов имеют более высокую плотность, чем вода и тонут в воде.
3. Плотность материала очень важна, особенно в авиации.
4. Модуль Юнга — отношение приложенной силы к упругой деформации данного материала.
5. Чем более металл жесткий, тем менее он деформируется под нагрузкой.
6. Когда металл растягивают, он сначала течет, то есть пластически деформируется.
7. Свинец, медь, алюминий и золото — самые ковкие металлы.
8. Сопротивление ползучести является очень важным свойством материалов, которые используются в авиационных моторах.
«FAMOUS PEOPLE OF SCIENCE AND ENGINEERING»
Sikorsky Igor Ivanovich was a well-known aircraft engineer and manufacturer.
Sikorsky was born in 1889 in Kiev, in the Ukraine, and got his education at the naval college in St. Petersburg, and later in Kiev and Paris. He was the first to make experiments in helicopter design. In 1913 he designed, built, and flew the first successful aeroplane. Later he built military aircrafts for Russia and France.
In 1919 Sikorsky moved to the United States and later helped to organize an aircraft company that produced a series of multiengine flying boats for commercial service. Sikorsky became an American citizen in 1928. In the late 1930s he returned to developing helicopters and produced the first successful helicopter in the west. Helicopters designed by Sikorsky were used mostly by the US Army Air Forces during World War II. He died in 1972 at the age of 83.
Tupolev Andrey Nikolayevich, famous aircraft designer, was born in 1888. He graduated from the Moscow Higher Technical School, where he designed the first Russian wind tunnel. He helped to found the Central Aerohydrodynamics Institute in 1918 and later worked as the head of its design bureau. During his career he directed the design of more than 100 military and commercial aircraft, including the TU-2 and TU-4 bombers used in the World War II. In 1955 he designed the TU-104, the first passenger jet airliner. His TU-144 supersonic jet liner began its commercial passenger flights in 1977.
UNIT 4
MACHINE-TOOLS
I. Text A: «Machine-tools», Text B: «Lathe»,
Text C: «Milling, boring, drilling machines. Shapers and Planers», Text D: «Dies»
II. Famous people of science and technology: George Stephenson, Robert Slephenson.
Text A: «MACHINE-TOOIS»
Machine-tools are used toshape metals and other materials. The material to be shaped is called theworkpiece.Most machine-tools are nowelectrically driven. Machine-tools with electrical drive are faster and moreaccurate than hand tools: they were an important element in thedevelopment of mass-production processes, as they allowed individual parts to be made in large numbers so as to beinterchangeable.
All machine-tools havefacilities for holding both the workpiece and the tool, and for accurately controlling the movement of the cutting toolrelative to the workpiece. Most machining operations generate largeamounts of heat, and use coolingfluids (usually a mixture of water and oils) for cooling andlubrication.
Machine-tools usually work materials mechanically but other machining methods have been developed lately. They include chemical machining,spark erosionto machine very hard materials to any shape by means of a continuous high-voltagespark (discharge) between an electrode and a workpiece. Other machining methods includedrilling using ultrasound, and cuttingby means of a laserbeam. Numerical control of machine-tools andflexible manufacturing systems have made it possible for complete systems of machine-tools to be used flexibly for the manufacture of arange of products.
Vocabulary:
machine-tools — станки
electrically driven — с электроприводом
shape — форма
workpiece — деталь
accurate — точный
development — развитие
to allow — позволять, разрешать
interchangeable — взаимозаменяемый
facility — приспособление
relative —относительный
amount — количество
fluid — жидкость
to lubricate — смазывать
spark erosion — электроискровая обработка
discharge — разряд
by means of — посредством
beam — луч
drilling — сверление
flexible — гибкий
range — ассортимент, диапазон
Text B: «LATHE»
Lathe is still the most important machine-tool. It produces parts ofcircular cross-section by turning the workpiece on its axis and cutting itssurface with a sharp stationary tool. The tool may be movedsideways to produce a cylindrical part and moved towards the workpiece to control thedepth of cut. Nowadays all lathes are power-driven by electric motors. That allows continuous rotation of the workpiece at a variety of speeds. The modern lathe is driven by means ofa headstock supporting a hollowspindle on accurate bearings and carrying either achuck or a faceplate, to which the workpiece is clamped. The movement of the tool, both along thelathe bed and at right angle to it, can be accurately controlled, soenabling a part to be machined to closetolerances. Modern lathes are often under numerical control.
Vocabulary:
lathe — токарный станок
circular cross-section — круглое поперечное сечение
surface — поверхность
stationary — неподвижный, стационарный
sideways — в сторону
variety — разнообразие, разновидность
depth — глубина
headstock — передняя бабка
spindle — шпиндель
chuck — зажим, патрон
faceplate — планшайба
lathe bed — станина станка
to enable — давать возможность
tolerance — допуск
General understanding:
1. What are machine-tools used for?
2. How are most machine-tools driven nowadays?
3. What facilities have all machine-tools?
4. How are the cutting tool and the workpiece cooled during machining?
5. What other machining methods have been developed lately?
6. What systems are used now for the manufacture of a range of products without the use of manual labor?
7. What parts can be made with lathes?
8. How can the cutting tool be moved on a lathe?
9. How is the workpiece clamped in a lathe?
10. Can we change the speeds of workpiece rotation in a lathe?
11. What is numerical control of machine tools used for?
Exercise 4.1. Find English equivalents in the text:
1. обрабатываемый материал
2. электропривод
3. более точный
4. отдельные детали
5. процесс массового производства
6. приспособления для держания резца и детали
7. операции по механической обработке детали
8. высоковольтный разряд
9. сверление ультразвуком
10. резание с помощью лазерного луча
11. гибкие производственные системы
12. детали круглого сечения
13. поворачивать деталь вокруг ее оси
14. двигать в сторону, двигать по направлению к детали
15. глубина резания
16. непрерывное вращение детали
17. движение резца вдоль станины
Exercise 4.2. Translate into English:
1. Токарный станок позволяет производить детали круглого сечения.
2. Деталь зажимается в патроне или на планшайбе токарного станка.
3. Резец может двигаться как вдоль станины, так и под прямым углом к ней.
4. Современные токарные станки часто имеют цифровое управление.
Text С: «MILLING MACHINE»
In a milling machine thecutter (фреза) is a circular device witha series of cuttingedges on itscircumference. The workpiece is held on a table that controls the feed against the cutter. The table has three possible movements:longitudinal, horizontal, andvertical; in some cases it can also rotate. Milling machines are the mostversatile of all machine tools.Flat or contouredsurfaces may be machined with excellent finish and accuracy.Angles, slots, gear teeth and cuts can be made by using various shapes of cutters.