Реляционная модель базы данных
Введение в базы данных. Основные понятия и определения.
База данных это именованные совокупности данных, отражающие состояние объектов и их отношение в рассматриваемой предметной области.
Система управления базами данных (СУБД) – это совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования баз данных многими пользователями.
Банк данных – это комплекс технических и программных средств, предназначенный для накопления и многоцелевого использования данных (коллективное СУБД).
Трёх уровневая модель СУБД.
База данных |
Концептуальный уровень |
Внешняя модель 3 |
Внешняя модель 1 |
Внешняя модель 2 |
Уровень 1:Уровень внешних моделей – это самый верхний уровень где каждая модель имеет свое видение данных. Этот уровень определяет точку зрения базы данных отдельных приложений.
Концептуальный уровень:Центральное управляющее звено, где здесь БД представлена в наиболее общем виде, который объединяет данные используемые всеми приложениями. Фактически концептуальный уровень отражает обобщённую модель предметной область.
Физический уровень (База данных):Это сами данные расположенные в файлах или в страничных структурах, расположенных навнешних носителях информации.
Модели данных
Выделяют следующие модели данных:
1. Инфологические
2. Дата логические
3. Физические
Процесс проектирования баз данных начинается с проектирования инфологической модели. Инфологическая модель данных это обобщённое неформальное описание создаваемой БД, выполненное с использованием естественного языка , математических формул, таблиц, графиков и др. средств понятных всем людям работающим над проектированием БД.
Группа | № | ФИО | Дата Рождения | ПОЛ |
ПКС -301 | Петров П. | 25.06.1991 | М | |
ТМ – 412 | Василёв В. | 02.03.1997 | М | |
БУХ – 303 | Ежова П. | 15.04.1999 | Ж |
-кортеж доменов
- домен
Инфологическая модель отображает реальный мир в некоторой понятной человеку концепции, полностью независимой от среды хранения данных. Поэтому Инфологическая модель не должна изменяться до тех пор, пока какие то изменения в реальном мире не потребуют изменения вне определения, чтобы эта модель продолжала отображать предметную область.
Существует множество подходов к построению этой модели: графовые модели, семантические сети, сущность – связь и другие.
Даталогическая модель
Инфологическая модель должна быть отображена в даталогической модели, понятной СУБД. Даталогическая модель это формальное описание инфологической модели на языке СУБД.
Иерархическая модель
Эта модель представляет собой совокупность связанных элементов, образующих иерархическую структуру. К основным понятиям иерархии относятся уровень, узел и связь.
узел
связь уровень
Узлом называется совокупность атрибутов данных описывающих некоторый объект. Каждый узел связан с одним узлом более высокого уровня и с любым количеством узлов нижнего уровня. Исключением является узел самого высокого уровня. Количество деревьев в базе данных определяется количеством корней деревьев. К каждой записи базы данных существует единственный путь от корневой записи. Простым примером может служить система доменных имен в интернете\ адрес. На первом уровне (корень дерева) лежит наша планета земля, на втором Страна, на третьем- Регион, на четвёртом – населённый пункт, улица, дом ,квартира. Типичным представителем является СУБД от IBM - IMS.
Все экземпляры данного типа потомка с общим экземпляром типа предка называется близнецами. Для базы данных определён полный порядок обхода. Сверху вниз и с права на лево.
Физическая модель
На основе даталогической модели строится физическая модель. Физическая организация данных оказывает основное влияние на эксплуатационные характеристики базы данных. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий, для под настройки модели для конкретной БД.
Пример: В частности для реляционной БД она уже учитывает:
1. Физические аспекты хранения таблиц в определённых файлах.
2. Создание индексов оптимизирующих скорости операций над данными с помощью приложения.
3. Выполнения различных действий над данными при определённых событиях, определяемых пользователям с помощь триггеров и хранимых процедур.
Клиент |
БД |
Сервер |
1 2
4 3
Идентификация - проверка по логину Аутентификация – проверка пароля
Идентификация + Аутентификация = Авторизация
Хорошо структурированные |
Плохо структурированные |
Семантические сети тезаурусы |
Дескрипторные модели |
Диаграммы потоков данных |
IDEF модели |
Фреймы |
ЕR- модели |
Реляционные |
Теоретико графовые |
Теоретико множественные |
Конетекстно определяемая структура |
Схемно определяемая структура |
иерархические |
сетевые |
Бинарных отношений |
Прямая организация |
Инвертированная организация |
Документальная информация |
Фактографическая информация |
Объектоно ориентированные |
Физические модели
Модели основанные на файловых структурах |
Модели имеющие страничную организацию |
Для всех уровней и для любого метода представления предметной области, лежит кодирование понятий отношений между понятиями. Ключевым этапом при разработке любой информационной системы является проведение системного анализа:
Формализация предметной области и представление системы как совокупности компонентов.
Композиция как основа системного анализа может быть функциональной ( построение иерархия).
Однако в большинстве систем, если говорить о базах данных, типы данных являются более статичным элементом чем способы их обработки. Поэтому получили интенсивное развитие такие методы системного анализа как диаграмма потоков data flown diagram. Развитие реляционных БД. Стимулировала развитие построения методик развития данных в частности ER диаграмм ER. Реляционная модель данных в качестве отображения непосредственно использует понятие отношения. Она ближе всего находится к концептуальной модели представления данных. И часто лежит в основе её.
В отличие от теоретика графовых моделей, в реляционной модели связи между отношениями реализуются не явным способом для чего используют ключи отношений. Например, отношения иерархического типа реализуется механизмом первичных и внешних ключей, когда в подчинённом отношении должен присутствовать факт атрибутов.
Такой атрибут отношений в основном отношений будет называться первичным ключом, а в подчинённом вторичным.
Прогресс в области разработки языков программирования связанных в первую очередь с типизацией данных и появлением объектно-ориентированных языков позволило подойти к анализу сложных систем с точки зрения иерархических представлений то есть с помощью классов объектов со свойствами полиморфизма, наследование, инкапсуляция.
ОТНОШЕНИЕ ЭТО ТАБЛИЦА.
КЛИЕНТ |
MySQl |
Поиск
Создание БД, таблицы
БД |
Удаление то что создали и
Редактирование.
Реляционная модель базы данных
Реляционные модели данных в настоящее время приобрели наибольшую популярность именно за такое представление данных.
Реляционную модель можно представить как особый метод представления данных, содержащий собственные данные (в виде таблиц), и способы работы и манипуляции с ними ( в виде связей). Реляционная модель предполагает три концептуальных элемента : Структура, Целостность и Обработка данных. В этих элементах есть свои обязательные понятия которые для дальнейшего изложения необходимо пояснить.
Таблица рассматривается как непосредственное хранилище данных. Традиционно в реляционных системах таблицу называют отношением. Строку таблицы называют кортежем, а столбец атрибутом. При этом атрибуты имеют уникальные имена ( в пределах отношения).
Количество кортежей в таблице называют кардинальным числом. Количество атрибутов степенью. Для отношения устанавливают уникальный идентификатор, то есть один или несколько атрибутов, значения которых в одно и то же время не бывают одинаковыми – идентификатор называют первичным ключом.Домен это множество допустимых однородных значений для того или иного атрибута. Таким образом домен можно рассмотреть как именованное множество данных причём составные части этого множества являются логически не делимыми единицами (в качестве домена могут выступать например перечень фамилий сотрудников учреждения однако не все фамилии могут присутствовать в таблице).
Домен |
KOD | NAME |
| |
Киреева | 25.50 | ||
Мотылёва | 17.05 | ||
… | …. | … |
Отношение
атрибуты
Поля KOD, NAME, SUMM это атрибуты таблицы содержащиеся в заголовке.
Пары KOD 5216, NAME Киреева, SUMM 25.50 являются элементами тела отношения.
В Реляционных базах данных в отличие от других моделей пользователь указывает какие данные для него необходимы а не то как это делать. По этой причине процесс перемещения и навигации по базе данных в реляционных системах является автоматическим, а эту задачу в СУБД выполняет оптимизатор. Его работа заключается в том чтобы наиболее эффективным способом произвести выборку данных из базы данных по запросу. Таким образом, оптимизатор по крайней мере должен суметь определить из каких таблиц выбираются данные насколько много информации в этих таблицах и каков физический порядок записи в таблицах и как они сгруппированы.
Кроме того реляционная БД выполняет и функции каталога. В каталоге хранится описание всех объектов из которых состоит база данных: таблиц, индексов, триггеров и т.п. Очевидно, что жизненно необходимо для правильной работы всей системы, такой компонент как оптимизатор. Оптимизатор использует информацию хранящуюся в каталоге. Интересен тот факт что каталог сам является набором таблиц, поэтому СУБД может манипулировать им традиционными способами, не прибегая к каким либо особым приёмам и методам .
Домены и отношения
Основные определения : Домены, виды отношений, предикаты.
Отношения имеет ряд основных свойств:
1. В самом общем случае в отношениях не бывает общих кортежей – это следует из самого определения отношений. Однако для некоторых СУБД в ряде случаев допускается отступление от этого свойства. По сколько в отношений имеет место первичный ключ, одинаковые кортежи – исключены.
2. Кортежи не упорядочены сверху вниз – в отношении просто отсутствует понятие позиционного номера. В отношений без потери информации можно с успехом расположить кортежи в любом порядке.
3. Атрибуты не упорядочены слева на право. Атрибуты в заголовке отношений можно располагаетесь в любом порядке, при этом целостность данных не нарушается. Поэтому понятие позиционного номера в отношении атрибута тоже не существует.
4. Значение атрибутов состоят из логически не делимых единиц – это следует из того, что значения берутся из доменов иначе можно сказать, что отношения не содержат групп повторений. То есть являются нормализованными.
В реляционных системах поддерживается несколько видов отношений:
1. Именованные представляют собой переменные отношения определяемые в СУБД путём операторов создания и как правило необходимые для более удобного представления информации для пользователя.
2. Базовые отношения являются непосредственно важной частью БД, поэтому при проектировании им дают собственное название.
3. Производное отношение это то которое было определено через другие, как правило базовые, отношения путём использования средств СУБД.
4. Представление это фактически является именованным производным отношением, при этом представление выражается исключительно через операторы СУБД, применённые к именованным отношениям, поэтому их физически в БД не существует.
5. Результат запросов это не именованное производное отношение содержащее данные(результат конкретного запроса). Результат в БД не хранится а существует до тех пор пока он необходим пользователю.
6. Хранимое отношение это то которое физически поддерживаются в памяти отношений, к хранимым отношениям чаше всего относятся база отношений. Исходя из вышесказанного, можно определить реляционную базу данных как набор отношений, связанных между собой.
Связь в данном случае это ассоциирование двух или более отношений.
БД не имеющая связей между отношениями имеет очень простую структуру и в полной мере реляционной БД назваться не может.
Одно из требований к организации реляционной базы данных это обеспечение поиска одних кортежей по значениям других, для чего необходимо установить связи.
KOD | NAME | SUMM | phone |
KOD | ADRES |
KOD | NAME | SUMM | phone | Group |
KOD | name |
Так в реальных информационных системах часто содержится тысячи кортежей, то теоритически между ними может быть установлено более миллиона связей. Наличие такого множества связей и определяет сложность реляционных моделей базы данных. Существуют следующие основные виды связи:
· Один к одному
· Один ко многим
· Многие ко многим
· Многие к одному
Связь один к одному предполагает, что в каждый момент времени каждому элементу (кортежу А) соответствует 0 или один элементов кортежей Б.
Б |
А |
Работник |
Зарплата |
Дом |
жильце |
1 ∞
Студенты |
Группа |
∞ 1
Связь многие ко многим состоит в том что в каждый момент времени множеству элементов А соответствует множество элементов Б, к сожалению этот тип связи в реляционных базах данных непосредственно не поддерживается.
Студенты |
Преподаватели |
∞ ∞
занятия |
Научное руководство |
∞ |
Студенты |
Преподаватели |
Студенты |
Преподы |
Расписание занятий |
∞ |
∞ |
∞ |
Студенты |
Тернарные связи
Целостность данных
В реляционных моделях вопросу целостности данных отводят особое место. Напомним, что ключ или потенциальный ключ это минимальный набор атрибутов, по значениям которых можно однозначно найти требуемый кортеж, минимальность означает что исключение из набора любого атрибута не позволяет идентифицировать кортеж по оставшимся атрибутам.
Каждое отношение обладает хотя бы одним возможным ключом. Один из них принимается за первичный ключ.
При выборе первичного ключа следует отдавать предпочтение не составным ключам или ключам, составленных из минимального набора атрибутов. Нежелательно также использовать ключи с длинными текстовыми значениями (Предпочтительней использовать в качестве ключей целочисленные атрибуты ) . Так для идентификации работника можно использовать либо уникальный табельный номер , или номер паспорта, либо набор из фамилий имени отчества и номера отдела. Не допускается что бы первичный ключ отношения, то есть любой атрибут участвующий в первичном ключе принимал неопределённые значения. В этом случае возникнет противоречивая ситуация (коллизия): Появится не обладающий уникальностью элемент первичного ключа. Поэтому при проектировании базы данных за этим следует тщательно следить.
О внешних ключах. Стоит отметить ввиду что отношение С связывает отношения B и А, то оно должно включать внешние ключи , соответствующий первичным ключам отношениям А и В.
А | |
Первичный ключ отношения А | Прочие атрибуты отношения А |
В | |
Первичный ключ отношения В | Прочие атрибуты отношения В |
Внешний ключ А | Внешний ключ В | Прочие атрибуты С |
С |
Внешний ключ таблицы формируется с помощью нескольких первичных ключей других таблиц.
Таким образом при рассмотрении проблемы выбора способа связи отношения в базе данных возникает вопрос о том каковы же должны быть внешние ключи . При этом для каждого внешнего ключа необходимо решить проблему связанную с возможностью (или невозможностью) появления во внешних ключах неопределённых значений(NULL – значений- значение атрибута для отсутствующей информации ). Другими словами может ли существовать некоторый кортеж в отношений, для которого не известен кортеж в связанных с ним отношении?
С другой стороны необходимо заранее обдумать вопрос о том что произойдёт при удаления кортежей из отношения на который ссылается внешний ключ. При этом существуют следующие вероятные возможности :
· Операция каскадируется – то есть удаление кортежей в отношениях приводит к удалению кортежей связанных отношением. Например удаление информации о фамилии имени и т.п. сотрудника в одном отношении приводит к удалению о его заработной плате в другом отношении;
· Операция ограничивается - то есть удаляются лишь те кортежи для которых связанной информации в другом отношении нет. Не вся информация удаляется (не во всех отношениях) так как она может быть использована в другом отношении, удаление информации в котором ведёт к нарушению целостности данных. Если такова информация имеется то удаление осуществить нельзя, например, удаление информации о имени, фамилии и т.п. сотрудника возможно лишь в том случае если информация в связанном отношении о его заработной плате отсутствует.
Нужно предусмотреть технологию того что будет происходить при попытке обновления первичного ключа отношения, на которые ссылается некоторый внешний ключ. Здесь имеются те же возможности как и при удалении:
· Операция каскадируется то есть при обновлении первичного ключа происходит обновление внешнего ключа в связанном отношении. Например обновление первичного ключа в отношении, где хранится информация о сотруднике приводит к обновлению внешнего ключа в отношении с информацией о заработной плате.
· Операция ограничивается то есть обновляются лишь те первичные ключи для которых связанной информации в другом отношении нет. Если таковая информация имеется то обновление сделать нельзя. Например обновление первичного ключа в отношении, где хранится информация о сотруднике, возможна лишь в том случае, если информация о его заработной плате в связанном отношении отсутсвует.1
Реляционная алгебра
Формальной основой базы реляционной модели БД является реляционная алгебра, основанное на теории множеств и рассматривающая специальный оператор над отношениями, и реляционное исчисление базирующиеся на математической логике.
Произведение |
Вычитание |
U объединение |
Проекция |
Выборка |
А Б В |
Г Д |
А А Б Б В В | Г Д Г Д Г Д |
А Б В | Г Г Д |
Г Д Е | Ж З И |
Соединение |
Деление |
А А А Б В В | Г Г Д |
Г Д |
А |
А Б В | Г Г Д | Ж Ж З |
Надо отметить что реляционная алгебра обладает большой мощностью - сложные запросы к базе данных могут быть выражены с помощью одного выражения. Именно по этой причине эти механизмы включены в реляционную модель данных. Любой запрос выражаемый с помощью одного выражения реляционной алгебры, или одной формулой реляционного исчисления, может быть выражен с помощью одного оператора этого языка.
Реляционная алгебра обладает важным свойством - она замкнута относительно понятия отношения. Это означает что выражение реляционной алгебры выполняется над отношениями реляционных баз данных и результаты их вычисления также представляют собой отношения.
Основная идея реляционной алгебры состоит в том что средства манипулирования отношениями, рассматриваемыми как множество основаны на традиционных множественных операциях дополненных некоторыми специфическими операциями для БД.
Опишем вариант алгебры который был предложен КОДДОМ. Операция состоит из 8 основных операторов :
· Выборка отношения (унарная операция)
· Проекция отношения (унарная операция)
· Объединения отношений
· Пересечение отношений(бинарная операция)
· Вычитание отношений
· Произведение отношений
· Соединение отношений
· Деление отношений
Эти операции можно объяснить следующим образом :
· Результатом выборки отношения по некоторому условию является отношение который включает только те кортежи первоначального отношения которые удовлетворяют этому условию.
· При осуществлении проекции отношения на заданный набор его атрибутов будет получено отношение кортежи которого взяты из соответствующих кортежей первого отношения.
· При выполнении операции объединения двух отношений будет получено отношение включающее все кортежи входящие в хотя бы одно из участвующих в операции отношений.
· При выполнении операции пересечения двух отношений будет получено отношение включающее все кортежи входящие в оба первоначальных отношения.
· При выполнении операции вычитания двух отношений будет получено отношение включающее все кортежи входящие в первое отношение , кроме тех которые также входят и во второе отношение.
· При выполнении прямого произведения двух отношений получается отношение кортежи которого являются сочетанием кортежей первого и второго отношения.
· При соединении двух отношений по некоторому условию образуется результирующее отношение кортежей которого является сочетанием кортежей первого и второго отношений, удовлетворяющим этому условию.
· Операция реляционного деления имеет два операнда – бинарная то есть (состоящее из двух атрибутов) и унарная (состоящая из одного атрибута) отношения. Результат операции является отношение состоящее из кортежей включающие отношение первого атрибута кортежей первого отношения, причем таких что множество значений второго атрибута совпадает со множеством значений второго отношения.
Помимо выше перечисленных есть ряд особых операций характерных для работы с базами данных:
· В результате операции переименования получается отношение набор кортежей, которого совпадает с телом первоначального отношения, но имена атрибутов изменены.
· Операция присваивания позволяет сохранить результат вычисления реляционного выражения существующим отношением базы данных.
Отсюда следует что результатом реляционной операции является некоторое отношение то имеется возможность образовывать реляционные выражения в которых вместо первоначального отношения (операнда), будет использоваться вложенное реляционное выражение. Это происходит благодаря тому факту что операция реляционной алгебры действительно замкнуты относительно понятия отношения. Начнём с операции объединения отношений, однако это в равной мере относится и к операциям пересечения и сочетания, то есть в реляционной алгебры результатом операции объединения является отношение. Если допустить в реляционной алгебре возможность объединения произвольных двух отношений с разными наборами атрибутов, то результатом такой операции будет множество, однако множество разнотипных кортежей, то есть вообще говоря не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения то такая операция объединения является бессмысленной. Это приводит к появлению понятия совместимости отношений по объединению: два отношения совместимы только в том случае, когда обладают одинаковыми заголовками, то есть имеет тот же набор имён атрибутов, и одноимённые атрибуты определены в том же домене.
При условии что два отношения совместимы по объединению, при обычном выполнении над ними операции объединения пересечения вычитания результатом операции является отношение с корректно определённым заголовком совпадающим с заголовком каждого из отношений – операндов. Если же два отношения не полностью совместимы по объединению, то есть совместимы во всем кроме имён атрибутов, то до выполнения операции типа соединения, эти отношения можно сделать полностью совместимыми по объединению путём применения операции переименования.
Операция прямого произведения двух отношений вызывает новые проблемы. В Теории множеств прямое произведение может быть получено для любых множеств. Элементы результирующего множества будут являться пары, составленные из элементов первого и второго множества. Поскольку отношения являются множествами то для любых двух отношений возможно получение прямого произведения. Однако результат не будет отношением. Элементами результата будут являться не кортежи, а пары кортежей. Поэтому в реляционной алгебре используется специальная форма операции взятия прямого произведения - расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, формирующийся при слиянии одного кортежа первого отношения, и одного кортежа второго отношения. Тут же возникает вторая проблема, связанная с получением корректно сформированного заголовка результирующего отношения, это приводит к необходимости ввода понятия совместимости отношений, по взятию расширенного прямого произведения.
Два отношения совместимы по взятию прямого произведения только в том случае, если множество имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть преобразованы к совместимому виду по взятию прямого произведения путём применения операции переименования к одному из этих отношений.
Операция выборки требует наличия двух отношений : первоначального отношения – операнда, и простого условия ограничения. В результате выполнения операции выборки производится отношение заголовок которого совпадает с заголовком отношения операнда, а в тело входят те кортежи отношения операнда, которые удовлетворяют значениям условия ограничения.
Введём ряд операторов.
Пусть union означает операцию объединения, intersect – операция пересечение, minus – операция вычитания. Для обозначения операции выборки будем использовать конструкцию A where B , где А – отношение операнд , а В простое условие сравнения. Пусть С1 и С2 два простых условия выборки
A where C1 AND C2 идентично (A where C1) intersect (A where C2)
A where C1 OR C2 идентично (A where C1) union (A where C2)
A where C1 not C2 идентично (A where C1) minus (A where C2)
С использованием этих определений можно реализовать операции выборки, в которых условием выборки является произвольное логическое выражение составленное из простых условий с использованием логических связей ( and, or, not) . Операция взятия проекций отношение А оп списку атрибутов а1, а2,…,an будет отношение заголовком которого является множество атрибутов, а1,а2,…,an. Тело результата будет состоять из кортежей для которых в отношении А имеется кортеж , атрибут а1 имеет значение b1, атрибут а2 значение b2< и так далее атрибут an – bn. По сути при выполнении операции проекции определяется «Вертикальная» вырезка отношения - операнда с удалением возникающих кортежей –дубликатов.
Операция соединения, называемая иногда соединением по условию требует наличия двух операндов – соединяемых отношений , и третьего операнда – простое условие. Пусть соединяется отношение А и В. Как и в случае операции выборки, условие соединения С имеет вид, ( а comp –op b) либо ( а comp –op const) где А и В имена атрибутов отношений А и В, const- литерально заданная константа. Comp-op – допустимая в данном контексте операция сравнения. Тогда по определению результатом операции соединения является отношение, получаемое путём, выполнения операции ограничения, по условию С прямого произведения отношения А и В.
Имеется важный частный случай соединения, естественное соединение. Операция соединения называется операцией естественного соединения, если условия соединения имеет вид (а=в) где а и в атрибуты разных операндов соединения. Этот случай важен потому что он особо часто встречается на практике и для него существуют эффективные алгоритмы реализации в СУБД. Операция естественного соединения применяется к паре отношений А и В, обладающих общим атрибутом Р, то есть атрибутом с одним и тем же именем и определённым на одном и том же домене. Пусть ав обозначает объединение заголовков отношений А и В. Тогда естественное соединение это спроецированный на ав результат соединения А и В. Операции естественного соединения не включается прямо в состав набора операций реляционной алгебры , но она имеет очень важное практическое значение.
Операция деления отношений нуждается в более подробном объяснении поскольку трудна для понимания. Пусть заданы два отношение А {a1,a2,..,an,b1,b2,…,bm}
B {b1,b2,…,bn} Будем полагать что атрибут b1 отношения A и атрибут b1 отношения B определены на одном и том же домене. Назавём множество атрибутов {aj} составным атрибутом а, множество {bj} cсоставным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения А (а,b) на унарное отношение B (b).
Результатом деления А на В является унарное отношение С (а), состоящее из таких кортежей v что в отношении А имеются кортежи <v,w> которые во множестве значений {w} включают множество значений b в отношении B.
Поскольку деление наиболее трудная операция поясним её примером. Пусть в БД студентов имеется два отношения : СТУДЕНТЫ (ФИО, НОМЕР ) и ИМЕНА (ФИО), причем унарное отношение ИМЕНА содержит все фамилии которыми обладают студенты института. Тогда после выполнения операции реляционного деления отношения СТУДЕНТЫ на отношения ИМЕНА, будет получено унарное отношение содержащее номера студенческих билетов принадлежащих студентам со всеми возможными в этом институте фамилиями.
Реляционное счисление
Допустим имеется база данных обладающая структурой СТУДЕНТЫ ( номер, имя , стипендия, код группы), и отношение ГРУППЫ(гр_ном, гр_кол, гр стар) Предположим что необходимо узнать имена и номера студ. билетов у студентов являющимися старостами групп с количеством человек больше 25. В реляционной алгебре нужно предпринять следующие действия для такого запроса :
1. Выполнить соединение отношений СТУДЕНТЫ и ГРУППЫ, по условию «студ_ номер =гр_стар»;
2. Ограничить полученное отношение по условию гр_кол>25.
3. Cпроецировать результат предыдущей операции на атрибут студ_имя, студ_номер.
Здесь пошагово сформулирована последовательность выполнения запроса в базе данных, каждый из которых соответствует одной реляционной операции . если же сформулировать тот же запрос с использование реляционного исчисления То мы получили бы формулу которую можно прочитать : Выдать СТУД_ИМЯ и СТУД_НОМЕР для таких студентов чтобы сосуществовала такая группа ГР_СТАР и значением ГР_КОЛ>25. Во второй формулировке мы указали лишь характеристики результирующего отношения но ничего не сказали о способе его формирования. В этом случае СУБД должна сама решить что за операции и в каком порядке нужно выполнить над отношениями СТУДЕНТЫ и ГРУППЫ. Оба рассмотренных в примере способа на самом деле эквиваленты и существует не очень сложные преобразования из одного в другой.
Базисными понятиями реляционного счисления являются понятия переменной с определённой область её значения, и понятия правильно построенной формулы, опирающиеся на переменные и спец. Функции. Что является областью определения переменной различаются исчисление кортежей, и исчисления доменов то есть вдоль или поперёк. В исчислении кортежей областями определения переменных является отношение баз данных, то есть допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены на которых определены атрибуты отношений баз данных то есть допустимым значением каждой переменной является значение каждой переменной.
Byte | Integer | String | Char | |
M | ||||
| N | |||
K | ||||
Для определения кортежи используется команда RANGE. Например чтобы определить переменную СТУДЕНТ областью определения которой является СТУДЕНТЫ нужно употребить конструкцию RANGE СТУДЕНТ IS СТУДЕНТЫ. Из этого определения следует что в любой момент времени переменная студент представляет некоторый кортеж отношения СТУДЕНТЫ. При использовании кортежных переменных в формулах можно ссылать на значения атрибута переменных . Например для того чтобы сослаться на значение атрибута СТУД_ИМЯ переменной СТУДЕНТ нужно употребить конструкцию СТУДЕНТ.СТУД_ИМЯ.
Правильно построенные формулы служат для выражения условий, накладываемых на кортежные переменные. В основе таких формул лежат простые сравнения, представляющие собой, операции сравнения значений атрибутов переменных и литерально заданных констант. Например конструкция СТУДЕНТ .СТУД_НОМ=123456. Является простым сравнением. Более сложным вариантом составных формул является с помощью логических связей AND, OR, NOT, IF…THEN. Наконец допускается построение правильно построенных формул с помощью кванторов. Если F это правильно построенная формула в которой участвует переменная var то конструкция EXIST (квантор существования) var (F) и FORALL(для всех кортежей) var (F) являются правильными.
Переменные, входящие в правильно построенные формулы могут быть свободными или связанными. Все переменные входящие в их состав при построение которых не использовались кванторы являются свободными. Это означает что если для какого то набора значений свободных кортежных переменных при вычислении формул получено значение «истина», то эти значения могут входить в результирующие отношение. Если же при построении формул используется квантор то переменные являются связанными. При вычислении значения такой правильно построенной формулы используется ни одно значение связанной переменной а вся её область определения.
1)EXISTS СТУД2 (CТУД .1СТУД_СТИП> СТУД2.СТУД_СТИП)
2)FORALL СТУД2 (CТУД .1СТУД_СТИП> СТУД2.СТУД_СТИП)
Пусть СТУД1 и СТУД2 две кортежные переменные определённые на отношение студенты, тогда формула , для текущего кортежа переменной СТУД1 принимает значение истина только в том случае если во всём отношении студенты найдётся такой кортеж связанный с переменной СТУД2 что значение его атрибута СТУД_СТИП удовлетворяет внутреннему условию сравнения. Правильно построенная формула №2 для построенного кортежа СТУД 1 принимает значение истина если для всех кортежей отношение СТУДЕНТЫ связанных с переменной СТУД 2 значение атрибута СТУД.СТИП удовлетворяет внутреннему условию.
Таким образом правильно построенные формулы обеспечивают средства выражения условия выборки из отношения баз данных. Чтобы можно было использовать реляционное исчисление для реальной работы с БД, требуется ещё один компонент который определяет набор и имена столбцов результирующего отношения. Этот компонент называется целевым списком.
Целевой список имеет вид :
· Var.attr –имя свободной переменной , атр имя атрибута отношения на котором определена переменная var.
· Var что эквивалентно отношению от списка, Var.attr1, Var.attr1… Var.attr№ включает имена всех атрибутов определяющего отношения .
· New_name = var.attr; новое имя соответствующего атрибута результирующего отношения.
Последний вариант требуется в тех случаях кода в формуле используется несколько свободных переменных с одинаковой областью определения. В исчислении доменов областью определения доменов являются не отношения а домены. Применительно к бд СТУДЕНТЫ ГРУППЫ можно говорить о доменных переменных ИМЯ (Значения домена – допустимые имена или НОМ СТУД). (Значения домена допустимые номера студентов).
Основным отличием исчисления доменов от исчисления кортежей является наличие дополнительного набора предикатов, позволяющих выражать так называемые условия членства. Если R это n- арное отношение с атрибутами (a1, a2, … an) то условие членства имеет вид R(ai1:Vi1,ai2:Vi2,…aim:Vim) где (m<=n). Где в Vij это либо литерально заданная константа либо имя кортежной переменной. Условие членства принимает значение истина, только в том случае если в отношении R существует кортеж, содержащий следующие значения указанных атрибутов. Если от Vij константа то на атрибут aij накладывается жёсткое условие независящее от текущих доменных переменных. Если же Vij имя доменной переменной то условие членства может принимать различные значения при разных значениях этой переменной.
Предикатом называют логическую функцию, которая для некоторого аргумента возвращает значение истина или ложь. Отношение может быть рассмотрено как предикат с аргументами, являющимися атрибутами рассматриваемого отношения. Если заданный конкретный набор кортежей присутствует в отношении, то предикат выдаст истинный результат в противном случае – ложный.
Вов всех остальных отношениях формулы и выражения исчисление доменов выглядит похожими на формулы и выражения исчисления кортежей. Реляционное счисление доменов положено в основу большинства языковых запросов, основанных на использовании форм.