Обеспечение защиты информации в сетях
Министерство образования Республики Коми
Государственное образовательное профессиональное учреждение
“Воркутинский политехнический техникум”
Реферат
ТЕМА: «оБеспичение защиты информации в компьютерных сетях»
По дисциплине: Безопасности жизнедеятельности
Для специальности: 230111 «Компьютерные сети»
Выполнил:
Ризванов Магамад,
Студент 4 курса, группы № 413
Проверил:
Кочерга И.В
Содержание
Введение
1. Проблемы защиты информации в компьютерных системах.
2. Обеспечение защиты информации в сетях.
3. Механизмы обеспечения безопасности:
3.1. Криптография.
3.2. Электронная подпись.
3.3. Аутентификация.
3.4. Защита сетей.
4. Требования к современным средствам защиты информации.
Заключение.
Введение
В вычислительной технике понятие безопасности является весьма широким. Оно подразумевает и надёжность работы компьютера, и сохранность ценных данных, и защиту информации от внесения в неё изменений неуполномоченными лицами, и сохранение тайны переписки в электронной связи. Разумеется, во всех цивилизованных странах на страже безопасности граждан стоят законы, но в сфере вычислительной техники правоприменительная практика пока развита недостаточно, а законотворческий процесс не успевает за развитием компьютерных систем, во многом опирается на меры самозащиты.
Всегда существует проблема выбора между необходимым уровнем защиты и эффективностью работы в сети. В некоторых случаях пользователями или потребителями меры по обеспечению безопасности могут быть расценены как меры по ограничению доступа и эффективности. Однако такие средства, как, например, криптография, позволяют значительно усилить степень защиты, не ограничивая доступ пользователей к данным.
Проблемы защиты информации в компьютерных системах.
Широкое применение компьютерных технологий в автоматизированных системах обработки информации и управления привело к обострению проблемы защиты информации, циркулирующей в компьютерных системах, от несанкционированного доступа. Защита информации в компьютерных системах обладает рядом специфических особенностей, связанных с тем, что информация не является жёстко связанной с носителем, может легко и быстро копироваться и передаваться по каналам связи. Известно очень большое число угроз информации, которые могут быть реализованы как со стороны внешних нарушителей, так и со стороны внутренних нарушителей.
Проблемы, возникающие с безопасностью передачи информации при работе в компьютерных сетях, можно разделить на три основных типа:
·перехват информации – целостность информации сохраняется, но её конфиденциальность нарушена;
· модификация информации – исходное сообщение изменяется либо полностью подменяется другим и отсылается адресату;
·подмена авторства информации. Данная проблема может иметь серьёзные последствия. Например, кто-то может послать письмо от вашего имени (этот вид обмана принято называть спуфингом) или Web – сервер может притворяться электронным магазином, принимать заказы, номера кредитных карт, но не высылать никаких товаров.
Одной из важных особенностей массового использования информационных технологий является то, что для эффективного решения проблемы защиты государственного информационного ресурса необходимо рассредоточение мероприятий по защите данных среди массовых пользователей. Информация должна быть защищена в первую очередь там, где она создаётся, собирается, перерабатывается и теми организациями, которые несут непосредственный урон при несанкционированном доступе к данным. Этот принцип рационален и эффективен: защита интересов отдельных организаций – это составляющая реализации защиты интересов государства в целом.
Обеспечение защиты информации в сетях.
В ВС сосредотачивается информация, исключительное право на пользование которой принадлежит определённым лицам или группам лиц, действующим в порядке личной инициативы или в соответствии с должностными обязанностями. Такая информация должна быть защищена от всех видов постороннего вмешательства: чтения лицами, не имеющими права доступа к информации, и преднамеренного изменения информации. К тому же в ВС должны приниматься меры по защите вычислительных ресурсов сети от их несанкционированного использования, т.е. должен быть исключён доступ к сети лиц, не имеющих на это права. Физическая защита системы и данных может осуществляться только в отношении рабочих ЭВМ и узлов связи и оказывается невозможной для средств передачи, имеющих большую протяжённость. По этой причине в ВС должны использоваться средства, исключающие несанкционированный доступ к данным и обеспечивающие их секретность.
Исследования практики функционирования систем обработки данных и вычислительных систем показали, что существует достаточно много возможных направлений утечки информации и путей несанкционированного доступа в системах и сетях. В их числе:
К организационным мерам защиты информации относятся:
· ограничение доступа в помещения, в которых происходит подготовка и обработка информации;
· допуск к обработке и передаче конфиденциальной информации только проверенных должностных лиц;
· хранение магнитных носителей и регистрационных журналов в закрытых для доступа посторонних лиц сейфах;
· исключение просмотра посторонними лицами содержания обрабатываемых материалов через дисплей, принтер и т.д.;
· использование криптографических кодов при передаче по каналам связи ценной информации;
· уничтожение красящих лент, бумаги и иных материалов, содержащих фрагменты ценной информац
· чтение остаточной информации в памяти системы после выполнения санкционированных запросов;
· копирование носителей информации и файлов информации с преодолением мер защиты;
· маскировка под зарегистрированного пользователя;
· маскировка под запрос системы;
· использование программных ловушек;
· использование недостатков операционной системы;
· незаконное подключение к аппаратуре и линиям связи;
· злоумышленный вывод из строя механизмов защиты;
· внедрение и использование компьютерных вирусов.
Обеспечение безопасности информации в ВС и в автономно работающих ПЭВМ достигается комплексом организационных, организационно-технических, технических и программных мер.
Организационно-технические меры защиты информации включают:
· осуществление питания оборудования, обрабатывающего ценную информацию от независимого источника питания или через специальные сетевые фильтры;
· установку на дверях помещений кодовых замков;
· использование для отображения информации при вводе-выводе жидкокристаллических или плазменных дисплеев, а для получения твёрдых копий – струйных принтеров и термопринтеров, поскольку дисплей даёт такое высокочастотное электромагнитное излучение, что изображение с его экрана можно принимать на расстоянии нескольких сотен километров;
· уничтожение информации, хранящейся в ПЗУ и на НЖМД, при списании или отправке ПЭВМ в ремонт;
· установка клавиатуры и принтеров на мягкие прокладки с целью снижения возможности снятия информации акустическим способом;
· ограничение электромагнитного излучения путём экранирования помещений, где происходит обработка информации, листами из металла или из специальной пластмассы.
Технические средства защиты информации – это системы охраны территорий и помещений с помощью экранирования машинных залов и организации контрольно-пропускных систем. Защита информации в сетях и вычислительных средствах с помощью технических средств реализуется на основе организации доступа к памяти с помощью:
· контроля доступа к различным уровням памяти компьютеров;
· блокировки данных и ввода ключей;
· выделение контрольных битов для записей с целью идентификации и др.
Архитектура программных средств защиты информации включает:
· контроль безопасности, в том числе контроль регистрации вхождения в систему, фиксацию в системном журнале, контроль действий пользователя;
· реакцию (в том числе звуковую) на нарушение системы защиты контроля доступа к ресурсам сети;
· контроль мандатов доступа;
· формальный контроль защищённости операционных систем (базовой общесистемной и сетевой);
· контроль алгоритмов защиты;
· проверку и подтверждение правильности функционирования технического и программного обеспечения.
Для надёжной защиты информации и выявления случаев неправомочных действий проводится регистрация работы системы: создаются специальные дневники и протоколы, в которых фиксируются все действия, имеющие отношение к защите информации в системе. Фиксируются время поступления заявки, её тип, имя пользователя и терминала, с которого инициализируется заявка. При отборе событий, подлежащих регистрации, необходимо иметь в виду, что с ростом количества регистрируемых событий затрудняется просмотр дневника и обнаружение попыток преодоления защиты. В этом случае можно применять программный анализ и фиксировать сомнительные события. Используются также специальные программы для тестирования системы защиты. Периодически или в случайно выбранные моменты времени они проверяют работоспособность аппаратных и программных средств защиты.
3. Механизмы обеспечения безопасности.
3.1. Криптография.
Для обеспечения секретности применяется шифрование, или криптография, позволяющая трансформировать данные в зашифрованную форму, из которой извлечь исходную информацию можно только при наличии ключа.
Системам шифрования столько же лет, сколько письменному обмену информацией.
Классической задачей криптографии является обратимое преобразование некоторого понятного исходного текста (открытого текста) в кажущуюся случайной последовательность некоторых знаков, называемую шифртекстом или криптограммой. Непременным требованием является то, что, используя некоторые логические замены символов в шифртексте, можно однозначно и в полном объёме восстановить исходный текст.
В основе шифрования лежат два основных понятия: алгоритм и ключ. Алгоритм – это способ закодировать исходный текст, в результате чего получается зашифрованное послание. Зашифрованное послание может быть интерпретировано только с помощью ключа.
3.2. Электронная подпись.
При помощи электронной подписи получатель может убедиться в том, что полученное им сообщение послано не сторонним лицом, а имеющим определённые права отправителем. Электронные подписи создаются шифрованием контрольной суммы и дополнительной информации при помощи личного ключа отправителя. Таким образом, кто угодно может расшифровать подпись, используя открытый ключ, но корректно создать подпись может только владелец личного ключа. Для защиты от перехвата и повторного использования подпись включает в себя уникальное число – порядковый номер.
3.3. Аутентификация.
Аутентификация является одним из самых важных компонентов организации защиты информации в сети. Прежде чем пользователю будет предоставлено право получить тот или иной ресурс, необходимо убедиться, что он действительно тот, за кого себя выдаёт.
При получении запроса на использование ресурса от имени какого-либо пользователя сервер, предоставляющий данный ресурс, передаёт управление серверу аутентификации. После получения положительного ответа сервера аутентификации пользователю предоставляется запрашиваемый ресурс.
При аутентификации используется, как правило, принцип, получивший название “что он знает”, - пользователь знает некоторое секретное слово, которое он посылает серверу аутентификации в ответ на его запрос. Одной из схем аутентификации является использование стандартных паролей. Пароль – совокупность символов, известных подключенному к сети абоненту, - вводится им в начале сеанса взаимодействия с сетью, а иногда и в конце сеанса
Одной из наиболее простых систем, не требующих дополнительных затрат на оборудование, но в то же время обеспечивающих хороший уровень защиты, является S/Key, на примере которой можно продемонстрировать порядок представления одноразовых паролей.
В процессе аутентификации с использованием S/Key участвуют две стороны – клиент и сервер. При регистрации в системе, использующей схему аутентификации S/Key, сервер присылает на клиентскую машину приглашение, содержащее зерно, передаваемое по сети в открытом виде, текущее значение счётчика итераций и запрос на ввод одноразового пароля, который должен соответствовать текущему значению счётчика итерации. Получив ответ, сервер проверяет его и передаёт управление серверу требуемого пользователю сервиса.
3.4. Защита сетей.
Для защиты корпоративных информационных сетей используются брандмауэры. Брандмауэры - этосистема или комбинация систем, позволяющие разделить сеть на две или более частей и реализовать набор правил, определяющих условия прохождения пакетов из одной части в другую. Как правило, эта граница проводится между локальной сетью предприятия и INTERNETOM, хотя её можно провести и внутри.
Однако защищать отдельные компьютеры невыгодно, поэтому обычно защищают всю сеть. Брандмауэр пропускает через себя весь трафик и для каждого проходящего пакета принимает решение – пропускать его или отбросить. Для того чтобы брандмауэр мог принимать эти решения, для него определяется набор правил.
Брандмауэр может быть реализован как аппаратными средствами (то есть как отдельное физическое устройство), так и в виде специальной программы, запущенной на компьютере.
Как правило, в операционную систему, под управлением которой работает брандмауэр, вносятся изменения, цель которых – повышение защиты самого брандмауэра. Эти изменения затрагивают как ядро ОС, так и соответствующие файлы конфигурации. На самом брандмауэре не разрешается иметь разделов пользователей, а следовательно, и потенциальных дыр – только раздел администратора. Некоторые брандмауэры работают только в однопользовательском режиме, а многие имеют систему проверки целостности программных кодов.
Брандмауэр обычно состоит из нескольких различных компонентов, включая фильтры или экраны, которые блокируют передачу части трафика.
Все брандмауэры можно разделить на два типа:
· пакетные фильтры, которые осуществляют фильтрацию IP-пакетов средствами фильтрующих маршрутизаторов;
· серверы прикладного уровня, которые блокируют доступ к определённым сервисам в сети.
Таким образом, брандмауэр можно определить как набор компонентов или систему, которая располагается между двумя сетями и обладает следующими свойствами:
· весь трафик из внутренней сети во внешнюю и из внешней сети во внутреннюю должен пройти через эту систему;
· только трафик, определённый локальной стратегией защиты, может пройти через эту систему;
· система надёжно защищена от проникновения.
4. Требования к современным средствам защиты информации.
Согласно требованиям гостехкомиссии России средства защиты информации от несанкционированного доступа(СЗИ НСД), отвечающие высокому уровню защиты, должны обеспечивать:
· дискреционный и мандатный принцип контроля доступа;
· очистку памяти;
· изоляцию модулей;
· маркировку документов;
· защиту ввода и вывода на отчуждаемый физический носитель информации;
· сопоставление пользователя с устройством;
· идентификацию и аутентификацию;
· гарантии проектирования;
· регистрацию;
· взаимодействие пользователя с комплексом средств защиты;
· надёжное восстановление;
· целостность комплекса средств защиты;
· контроль модификации;
· контроль дистрибуции;
· гарантии архитектуры;
Комплексные СЗИ НСД должны сопровождаться пакетом следующих документов:
· руководство по СЗИ;
· руководство пользователя;
· тестовая документация;
· конструкторская (проектная) документация.
Таким образом, в соответствии с требованиями гостехкомиссии России комплексные СЗИ НСД должны включать базовый набор подсистем. Конкретные возможности этих подсистем по реализации функций защиты информации определяют уровень защищённости средств вычислительной техники. Реальная эффективность СЗИ НСД определяется функциональными возможностями не только базовых, но и дополнительных подсистем, а также качеством их реализации.
Заключение
Вслед за массовым применением современных информационных технологий криптография вторгается в жизнь современного человека. На криптографических методах основано применение электронных платежей, возможность передачи секретной информации по открытым сетям связи, а также решение большого числа других задач защиты информации в компьютерных системах и информационных сетях. Потребности практики привели к необходимости массового применения криптографических методов, а следовательно к необходимости расширения открытых исследований и разработок в этой области. Владение основами криптографии становится важным для учёных и инженеров, специализирующихся в области разработки современных средств защиты информации, а также в областях эксплуатации и проектирования информационных и телекоммуникационных систем.
Одной из актуальных проблем современной прикладной криптографии является разработка скоростных программных шифров блочного типа, а также скоростных устройств шифрования.
В настоящее время предложен ряд способов шифрования, защищённых патентами Российской Федерации и основанных на идеях использования:
· гибкого расписания выборки подключений;
· генерирования алгоритма шифрования по секретному ключу;
· подстановок, зависящих от преобразуемых данных