Модулированные сети могут одновременно передавать телепрограммы, речь, двоичные данные и т. п. 6 страница
Дополнительные схемы.
К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.
Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей точкой, двоично-кодированными десятичными числами для вычисления некоторых трансцендентных функций.
Математический сопроцессор имеет свою систему команд и работает параллельно с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз. Последние модели МП, начиная с МП 80486 DX, включают сопроцессор в свою структуру.
Контроллер прямого доступа к памяти освобождает МП от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие ПК. Без контроллера обмен данными между ВЗУ и ОЗУ осуществляется через регистр МП, а при его наличии данные непосредственно передаются между ВЗУ и ОЗУ, минуя МП.
Сопроцессор ввода-вывода за счет параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (дисплея, принтера, НЖМД, НГМД и др.), освобождает МП от обработки процедур ввода-вывода, в том числе реализует режим прямого доступа к памяти.
Контроллер прерываний.
Прерывание - это временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной), программы.
В ЭВМ используются три вида прерываний: аппаратные, пользовательские, программные.
Прерывания возникают при работе компьютера постоянно. Все процедуры ввода-вывода информации выполняются по прерываниям. Например: прерывания от таймера возникают и обслуживаются контроллером прерываний 18 раз в секунду.
Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. Получив этот сигнал, МП приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.
Системная шина - это основная интерфейсная система компьютера, обеспечивающая сопряжение и связи всех его устройств между собой. Она включает в себя (рис. 2.8):
Рис. 2.8. Структура системной шины
− кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разделов числового кода (машинного слова) операнда;
Системная шина обеспечивает три направления передачи информации:
1) между микропроцессором и основной памятью;
2) микропроцессором и портами ввода-вывода внешних устройств;
3) основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).
Все блоки (их порты ввода-вывода) через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры).
Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему – контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.
Конструктивно ПК выполнены в виде центрального системного блока, к которому через разъемы подключаются внешние устройства: дополнительные устройства памяти, клавиатура, дисплей, принтер и др.
Системный блок обычно включает в себя системную плату, блок питания, накопители на дисках, разъемы для дополнительных устройств и платы расширения с контроллерами – адаптерами внешних устройств.
На системной плате (часто ее называют материнской платой – Mouther Board) размещаются: микропроцессор, математический сопроцессор, генератор тактовых импульсов, блоки (микросхемы) ОЗУ и ПЗУ, адаптеры клавиатуры, НЖМД и НГМД, контроллер прерываний, таймер и др.
2.2.3 Внутримашинный системный интерфейс
Внутримашинный системный интерфейс – система связи и сопряжения узлов и блоков ЭВМ между собой – представляет собой совокупность электрических линий связи (проводов), схем сопряжения с компонентами компьютера, протоколов (алгоритмов) передачи и преобразования сигналов. Существуют два варианта организации внутримашинного интерфейса.
1. Многосвязный интерфейс: каждый блок ПК связан с прочими блоками своими локальными проводами. Он применяется только в простейших бытовых ПК.
2. Односвязный интерфейс: все блоки ПК связаны друг с другом через общую или системную шину.
В подавляющем большинстве современных ПК в качестве системного интерфейса используется системная шина. Ее важнейшими функциональными характеристиками являются: количество обслуживаемых устройств и пропускная способность, т. е. максимально возможная скорость передачи информации. Пропускная способность шины зависит от разрядности (8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой она работает. В качестве системной шины в разных ПК используются:
− шины расширений, или шины общего назначения, позволяющие подключать большое число самых разнообразных устройств;
− локальные шины, специализирующиеся на обслуживании небольшого количества устройств определенного класса.
Сравнительные технические характеристики некоторых шин приведены в таблице 2.3.
Таблица 2.3 Основные характеристики шин
Параметр | ISA | EISA | MCA | VLB | PCI |
Разрядность шины, бит | |||||
данных | 32; 64 | 32; 64 | 32; 64 | ||
адреса | |||||
Рабочая частота, МГц | до 33 | до 33 | |||
Пропускная способность, Мбайт/с | |||||
теоретическая | 132; 264 | ||||
практическая | 50; 100 | ||||
Число подключаемых устройств, шт. |
Шины расширений
Шина Multibus имеет две модификации: PC/XT bus (Personal Computer eXtended Technology – ПК с расширенной технологией) и PC/AT bus (PC Advanced Technology – ПК с усовершенствованной технологией).
Шина PC/XT bus – 8-разрядная шина данных и 20-разрядная шина адреса, рассчитанная на тактовую частоту 4,77 МГц; имеет 4 линии для аппаратных прерываний и 4 канала для прямого доступа в память (DMA – Direct Memory Access). Шина адреса ограничивает адресное пространство микропроцессора величиной 1 Мбайт; используется с МП 8086,8088.
Шина PC/AT bus – 16-разрядная шина данных и 24-разрядная шина адреса, рабочая тактовая частота до 8 МГц, но может использоваться и МП с тактовой частотой 16 МГц, так как контроллер шины может делить частоту пополам; имеет 7 линий для аппаратных прерываний и 4 канала DMA; используется с МП 80286.
Шина ISA (Industry Standard Architecture – архитектура промышленного стандарта) – 16-разрядная шина данных и 24-разрядная шина адреса, рабочая тактовая частота 8 МГц, но может использоваться и МП с тактовой частотой 50 МГц (коэффициент деления увеличен); по сравнению с шинами PC/XT и PC/AT увеличено количество линий аппаратных прерываний с 7 до 15 и каналов прямого доступа к памяти DMA с 7 до 11. Благодаря 24-разрядной шине адресное пространство увеличилось с 1 до 16 Мбайт. Теоретическая пропускная способность шины данных равна 16 Мбайт/с, но реально она ниже (около 4–5 Мбайт/с) ввиду ряда особенностей ее использования. С появлением 32-разрядных высокоскоростных МП шина ISA стала существенным препятствием увеличения быстро-действия ПК.
Шина EISA (Extended ISA) – 32-разрядная шина данных и 32-разрядная шина адреса, создана в 1989 г. Адресное пространство шины 4 Гбайт, пропускная способность 33 Мбайт/с, причем скорость обмена по каналу микропроцессорной КЭШ-памяти определяется параметрами микросхем памяти, увеличено число разъемов расширений (теоретически может подключаться до 15 устройств, практически – до 10); улучшена система прерываний, шина EISA обеспечивает автоматическое конфигурирование системы и управление DMA; полностью совместима с шиной ISA (есть разъем для подключения ISA), поддерживает многопроцессорную архитектуру вычислительных систем; весьма дорогая и применяется в скоростных ПК, сетевых серверах и рабочих станциях.
Шина МСА (Micro Channel Architecture) – 32-разрядная шина, созданная фирмой IBM в 1987 г. для машин PS/2, пропускная способность 76 Мбайт/с, рабочая частота 10–20 МГц, по своим прочим характеристикам близка к шине EISA, но не совместима ни с ISA, ни с EISA. Поскольку ЭВМ PS/2 не получили широкого распространения из-за отсутствия наработанного обилия прикладных программ, шина МСА также используется не очень широко.
Локальные шины
Современные вычислительные системы характеризуются:
− стремительным ростом быстродействия микропроцессоров (например, МП Pentium может выдавать данные со скоростью 528 Мбайт/с по 64-разрядной шине данных) и некоторых внешних устройств (так, для отображения цифрового полноэкранного видео с высоким качеством необходима пропускная способность 22 Мбайт/с);
− появлением программ, требующих выполнения большого количества интерфейсных операций (например, программы обработки графики в Windows, работа в среде Multimedia).
Пропускной способности шин расширения ПК, обслуживающих одновременно несколько устройств, оказалось недостаточно для комфортной работы пользователей, так как компьютеры стали подолгу "задумываться".
Разработчики интерфейсов пошли по пути создания локальных шин, подключаемых непосредственно к шине МП, работающих на тактовой частоте МП (но не на внутренней рабочей его частоте) и обеспечивающих связь с некоторыми скоростными внешними по отношению к МП устройствами, основной и внешней памятью, видеосистемами и др.
В настоящее время существуют два основных стандарта универсальных локальных шин: VLB и РСI.
Шина VLB (VESA Local Bus – локальная шина VESA) разработана в 1992 г. Ассоциацией стандартов видеооборудования (VESA – Video Electronics Standards Association), поэтому часто ее называют шиной VESA.
Шина VLB по существу является расширением внутренней шины МП для связи с видеоадаптером и реже с винчестером, платами Multimedia, сетевым адаптером. Разрядность шины 32 бит, на подходе 64-разрядный вариант шины. Скорость передачи данных по VLB 80 Мбайт/с (теоретически достижимая скорость 132 Мбайт/с).
Недостатки шины:
1) рассчитана на работу с МП 80386, 80486, пока не адаптирована для процессоров Pentium, Pentium Pro, Power PC;
2) жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту);
3) малое количество подключаемых устройств (к шине VLB могут подключаться только четыре устройства);
4) отсутствует арбитраж шины (могут быть конфликты между подключаемыми устройствами).
Шина РСI (Peripheral Component Interconnect – соединение внешних устройств) разработана в 1993 г. фирмой Intel.
Шина РСI является намного более универсальной, чем шина VLB, имеет свой адаптер, позволяющий ей настраиваться на работу с любым МП (80486, Pentium, Pentium Pro, Power PC и др.); она позволяет подключать 10 устройств самой разной конфигурации с возможностью автоконфигурирования, имеет свой арбитраж, средства управления передачей данных. Разрядность РСI 32 бита с возможностью расширения до 64 бит, теоретическая пропускная способность 132 Мбайт/с, а в 64-битовом варианте – 263 Мбайт/с (реальная – вдвое ниже).
Шина РСI, хотя и является локальной, выполняет многие функции шины расширения, в частности, шин расширения ISA, EISA, МСА (она совместима с ними) при наличии шины РСI подключаются не непосредственно к МП (как это имеет место при использовании шины VLB), а к самой шине РСI (через интерфейс расширения).
Конфигурация систем с шиной РСI показана на рисунке 2.9. Следует иметь в виду, что использование в ПК шин VLB и РСI возможно только при наличии соответствующей VLB- или PCI-материнской платы. Выпускаются материнские платы с мульти-шинной структурой, позволяющей использовать ISA/EISA, VLB и РС1, так называемые материнские платы, с шиной VIP (по начальным буквам VLB, ISA и РС1).
Локальные шины IDE (Integrated Device Electronics), EIDE (Enhanced IDE), SCSI (Small Computer System Interface) используются чаще всего в качестве интерфейса только для внешних запоминающих устройств.
Рис. 2.9. Конфигурация системы с шиной PCI
2.1.4 Функциональные характеристики ПЭВМ
Основными характеристиками ПК являются:
1. Быстродействие, производительность, тактовая частота. Единицами измерения быстродействия служат:
− МИПС (MIPS – Mega Instruction Per Second) – миллион операций над числами с фиксированной запятой (точкой);
− МФЛОПС (MFLOPS – Mega FLoating Operations Per Se-cond) – миллион операций над числами с плавающей запятой (точкой);
− КОПС (KOPS – Kilo Operations Per Second) – для низкопроизводительных ЭВМ тысяча неких усредненных операций над числами.
Оценка производительности ЭВМ всегда приблизительная, ибо при этом ориентируются на некоторые усредненные или, наоборот, конкретные виды операций. Реально при решении различных задач используются и различные наборы операций, поэтому для характеристики ПК вместо производительности обычно указывают тактовую частоту, более объективно определяющую быстродействие машины, так как каждая операция требует для своего выполнения вполне определенного количества тактов. Зная тактовую частоту, можно достаточно точно определить время выполнения любой машинной операции.
2. Разрядность машины и кодовых шин интерфейса.
Разрядность – это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК.
3. Типы системного и локальных интерфейсов.
Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды.
4. Емкость оперативной памяти.
Емкость оперативной памяти измеряется чаще всего в мегабайтах (Мбайт), реже в килобайтах (кбайт): 1 Мбайт = 1024 кбайт = = 10242 байт.
Многие современные прикладные программы при оперативной памяти емкостью меньше 8 Мбайт просто не работают либо работают, но очень медленно.
Следует иметь в виду, что увеличение емкости основной памяти в 2 раза помимо всего прочего дает повышение эффективной производительности ЭВМ при решении сложных задач примерно в 1,7 раза.
5. Емкость накопителя на жестких магнитных дисках (винчестера) измеряется обычно в мегабайтах или гигабайтах (1 Гбайт = = 1024 Мбайт).
6. Тип и емкость накопителей на гибких магнитных дисках.
В настоящее время применяются в основном накопители на гибких магнитных дисках, использующие дискеты диаметром 3,5 дюйма (1 дюйм = 25,4 мм) и емкостью 1,44 Мбайт.
7. Виды и емкость кэш-памяти.
Кэш-память – это буферная, не доступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в более медленно действующих запоминающих устройствах. Например, для ускорения операций с основной памятью организуется регистровая кэш-память внутри микропроцессора (кэш-память первого уровня) или вне микропроцессора на материнской плате (кэш-память второго уровня); для ускорения операций с дисковой памятью организуется кэш-память на ячейках электронной памяти.
Следует иметь в виду, что наличие кэш-памяти емкостью 256 кбайт увеличивает производительность ПК примерно на 20 %.
8. Тип видеомонитора (дисплея) и видеоадаптера.
9. Тип принтера.
10. Наличие математического сопроцессора.
Математический сопроцессор позволяет в десятки раз ускорить выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами.
11. Имеющееся программное обеспечение и вид операционной системы.
12. Аппаратная и программная совместимость с другими типами ЭВМ, означающая возможность использования на компьютере тех же технических элементов и программного обеспечения, что и на других типах машин соответственно.
13. Возможность работы в вычислительной сети.
14. Возможность работы в многозадачном режиме. Этот режим позволяет выполнять вычисления одновременно по нескольким программам (многопрограммный режим) или для нескольких пользователей (многопользовательский режим). Совмещение во времени работы нескольких устройств машины, возможное в таком режиме, позволяет значительно увеличить эффективное быстродействие ЭВМ.
15. Надежность.
Надежность – это способность системы выполнять полностью и правильно все заданные ей функции. Она измеряется обычно средним временем наработки на отказ.
16. Стоимость.
17. Габариты и масса.
2.2 Микропроцессоры
Появление и развитие ЭВМ в мировой практике связано с бурным прогрессирующим совершенствованием элементной базы цифровой электроники. К настоящему времени человеческая мысль создала и освоила четыре поколения ЭВМ. На очереди появление ЭВМ пятого поколения – машин искусственного интеллекта.
С начала 70-х гг. в развитии вычислительной техники определились два параллельных и взаимодействующих направления:
− разработка ЭВМ с фиксированной структурой и системой команд на основе интегральных микросхем (ИМС) средней и большой степени интеграции;
− разработка семейства микропрограммируемых больших интегральных схем (БИС), обеспечивающих создание процессоров ЭВМ различной архитектуры.
Такие микропрограммируемые БИС стали называться микропроцессорами (МП). Первое сообщение о разработке МП опубликовано фирмой INTEL (США) в 1971 гг.
Появление микропроцессоров привело к освоению принципиально новых направлений в разработке и применении компьютерной техники.
К концу 70-х гг. наметился некоторый отход науки от проблем создания высокопроизводительных универсальных ЭВМ, имеющих значительную стоимость, внушительные весогабаритные показатели, большое энергопотребление и материалоемкость, к проблемам освоения микропроцессорной техники. Микропроцессоры стали массовой продукцией электронной промышленности.
Создание МП по праву считается одним из крупнейших достижений современной микроэлектроники.
Микропроцессором называется программно-управляемое устройство, предназначенное для обработки цифровой информации и управления этим процессом, реализованное в виде одной или нескольких БИС – сверхбольших БИС (СБИС).
Преимущества МП:
1. Низкое энергопотребление.
2. Малая материалоемкость.
3. Высокая технологичность и надежность.
4. Широкие функциональные возможности.
5. Гибкость и точность цифровой обработки сигналов при постоянно снижающейся стоимости.
Все это стало причиной и следствием внедрения МП в самые разнообразные сферы человеческой деятельности. Они являются теми системными элементами, на основе которых создаются устройства промышленной автоматики, связи, измерительной техники и устройства управления бытовой автоматикой, другой аппаратурой различного назначения.
С появлением МП стало возможным создание мобильных высокоэффективных специализированных микроЭВМ, профессиональных и персональных компьютеров.
МП является базовым элементом, обладающим всеми свойствами процессора ЭВМ, но в микроминиатюрном исполнении.
Преимущества микропроцессоров по сравнению с процессорами ЭВМ позволили приблизить средства обработки информации к ее источникам, а средства управления – к местам приложения управляющих воздействий.
В последнее время МП стали проникать в аппаратные средства связи. На их основе реализуются специализированные бортовые ЭВМ комплексов РРС и ТРС, аппаратных управления узлами связи и системой связи, кроссовыми аппаратными опорных УС, а также измерительная и диагностирующая аппаратура.
Внедрение микропроцессоров в системы управления и связи позволили существенно улучшить их функциональную надежность, помехоустойчивость, быстродействие и другие эксплуатационные показатели. Применение МП в РЭС позволило широко использовать принципы программируемой логики, заключающейся в том, что все преобразования информации осуществляются по программе, записанной в памяти и реализующей заданный алгоритм функционирования РЭС.
Внедрение микропроцессоров в технические системы привело к революции не только в технологии микроэлектроники, но и в мышлении современного инженера, поскольку проектирование и эксплуатация систем с МП требует качественно нового подхода.
Видоизменились задачи подготовки специалистов связи, от которых теперь требуются знания и в области функционирования микропроцессоров, и в области их программирования.
2.3.1 Типы и структура микропроцессоров
2.3.1.1 Основные характеристики МП
1. Разрядность. Под ней понимается стандартная длина слова, с которым оперируют составные части МП.
МП бывают с фиксированной и с изменяемой разрядностью слова. При фиксированной разрядности наиболее распространены МП с длиной слова 8 и 16 бит. Во втором случае возможно построение 8-, 16-, 24-, 32-разрядных МП из секций разрядностью 2, 4 и 8.
2. Производительность. Определяется временем решения ряда тестовых задач и зависит от быстродействия выполнения простых операций.
3. Система команд является отличительным признаком для любого МП. Она отражает функциональные возможности устройства. Система команд МП может содержать как малое число команд (восемь), так и большое число (до двухсот) основных команд. Состав команд не является нормализованным.
4. Объем адресуемой памяти характеризует информационные возможности МП и к настоящему времени достигает сотен гигабайт, что было доступно ранее только универсальным ЭВМ.
2.3.1.2 Типовая структура микропроцессора
Типовая структура МП (рис. 2.10):
− арифметико-логическое устройство (АЛУ);
− блок внутренних регистров;
− устройство управления;
− внутренняя шина данных – для передачи данных между этими блоками.
Назначение составных частей микропроцессора:
1. Арифметико-логическое устройство (АЛУ) выполняет одну из главных функций МП: обработку данных. Перечень функций АЛУ зависит от типа МП. Они определяют архитектуру МП в целом. В большинстве МП перечень функций АЛУ ограничивается функциями сложения, вычитания, логическими операциями: и, или, не, исключающее или, сдвиг вправо или влево, положительные и отрицательные приращения.
Рис. 2.10. Структурная схема микропроцессора 8086/8088
2. Важная составная часть МП – регистры, каждый из которых можно использовать для хранения одного слова данных. Часть регистров имеет специальное назначение, другая – многоцелевое. Последние регистры называются регистрами общего назначения (РОН) и могут использоваться программистами по их усмотрению.
Назначение основных регистров
Аккумулятор – это главный регистр МП. Большинство операций выполняется с использованием только АЛУ и аккумулятора, в котором размещается одно из слов, участвующих в операции, а также результат операции. Аккумулятор используется для передачи данных из одной части МП в другую, например, из порта ввода-вывода в память, между двумя областями памяти и т. д.
В аккумуляторе МП могут выполняться некоторые действия непосредственно над данными. Это операции очистки или установки всех единиц, инверсии и сдвигов. Данные в него поступают с внутренней шины данных МП. Количество разрядов аккумулятора соответствует разрядности МП. Однако в ряде случаев аккумуляторы имеют двойную длину разрядов. Дополнительные разряды используются для размещения данных, появляющихся при выполнении некоторых арифметических операций. Так, при умножении двух 8-битовых слов результат – 16-битовый, он полностью размещается в аккумуляторе.
Счетчик команд – один из наиболее важных регистров МП.
Программа – это последовательность команд, хранимых в памяти ЭВМ и предназначенных для управления действиями машины. Для корректного выполнения программы команды должны поступать в строго определенном порядке. Когда МП начинает работать, то по команде начальной установки в счетчик команд загружаются данные из памяти – адрес, указывающий на первую команду программы. Этот адрес посылается по адресной шине к схемам управления памятью, откуда считывается команда по данному адресу и пересылается в регистр команд.
Регистр команд хранит команду во время ее дешифрования и выполнения. Входные данные поступают в этот регистр из памяти по мере последовательной выборки команд. Кроме того, в регистр команд данные могут быть записаны с помощью пульта управления ЭВМ.
Регистр адреса памяти указывает адрес в области памяти, подлежащей использованию микропроцессором. Выход этого регистра называется адресной шиной и используется для выбора области памяти или порта ввода-вывода.
В течение выборки команды из памяти регистры адреса памяти и счетчика команд имеют одинаковое содержимое. После декодирования команды счетчика команд в нем производится приращение в отличие от регистра адреса.
Буферный регистр предназначен для временного хранения данных.
Регистр состояния предназначен для хранения результатов некоторых проверок, осуществляемых в ходе выполнения программы. Его разряды содержат информацию, по которой проверяется естественная последовательность выполнения программы после выполнения команд условных переходов. Регистр состояний предоставляет программисту возможность организации работы МП так, чтобы при определенных условиях менять порядок выполнения команд.
Регистры общего назначения (РОН) имеют в своем составе набор регистров для запоминания данных. АЛУ может выполнять операции с содержимым РОН (инверсия, сдвиг и т. д.) без выхода на внешнюю магистраль адресов и данных, чем обеспечивается высокое быстродействие.
Указатель стека. Стек – это набор регистров МП или ячеек оперативной памяти, откуда данные выбираются "сверху", т. е. по принципу "последним пришел – первым вышел". При записи в стек очередного слова все записанные ранее слова смещаются на один регистр вниз, как патроны в магазине автомата при его снаряжении.
3. Схемы управления обеспечивают поддержание требуемой последовательности функционирования всех звеньев МП.
По сигналам схем управления очередная команда извлекается из регистра команд. При этом определяется, что необходимо делать с данными, а затем обеспечивается само действие.
Главной функцией схем управления является декодирование команды, находящейся в регистре команд, с помощью дешифратора команд, который в результате выдает сигналы, необходимые для ее выполнения.
4. Система шин МП.
Система шин обеспечивает связь устройств микропроцессора между собой и с внешней средой.
2.3.1.3 Программно-логическая модель центрального
процессора
На рисунке 2.11 показана логическая организация МП Intel 8086 (КР1810ВМ86). Он широко применяется в ПЭВМ семейств IBM PC, IBM PC/XT, PCjr, PS/2 (модели 25, 30). Некоторые из перечисленных машин построены на базе МП Intel 8088, который отличается количеством внешних линий данных (имеются и другие отличия, например сокращение длины очереди команд, но они не могут считаться принципиальными).
В составе МП имеется 14 программно-доступных регистров. Он манипулирует логическими адресами, содержащими 16-раз-рядный сегментный (базовый) адрес и 16-разрядное внутрисегментное смещение. Сегментные адреса находятся в одном из четырех регистров: CS – код (программа); DS – данные, SS – стек; ES – экстракод (дополнительные данные).
В состав блока регистров общего назначения (РОН) входят восемь 16-разрядных регистров, из них четыре (SP, BP, SI, DI) предназначены для хранения внутрисегментных смещений. Все РОН участвуют в выполнении арифметических и логических операций, представляя операнды и фиксируя результат.
Регистр адреса команд (счетчик адреса) IP используется для выбора команд программы в текущем сегменте кода CS.