Вычисление функций двух переменных

Примерами объектов подобного вида второго порядка являются эллипсоид, гиперболоид, параболоид, конус второго порядка и многие другие. Рассмотрим построение эллипсоида, под которым понимается поверхность, определяемая в системе декартовых прямоугольных координат следующим уравнением:

Вычисление функций двух переменных - student2.ru (2.1)

Такое уравнение описывает эллипсоид, представляющий собой замкнутую овальную поверхность, обладающую тремя взаимно перпендикулярными плоскостями симметрии.

Для построения эллипсоида в Excel каноническое уравнение (2.1) необходимо решить относительно переменной z(представить в виде функции z=f(x, у):

Вычисление функций двух переменных - student2.ru

Пусть необходимо построить верхнюю часть эллипсоида, лежащую в диапазонах: х=[–3; 3], у=[–2; 2] с шагом ∆х =0,5 для обеих переменных. Введем значения переменной хв столбец А,для чего в ячейку А1 вводим символ х, а в ячейку А2 вводится первое значение аргумента (–3). В ячейку A3 вводится второе значение аргумента - левая граница диапазона плюс шаг построения (–2,5).Затем, выделив блок ячеек А2:АЗ, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А14).

Значения переменной увводим в строку 1, для чего в ячейку В1 вводится первое значение переменной у= -2. В ячейку С1 вводится второе значение переменной у=-1,5 в соответствии с заданным шагом переменной у. Затем, выделив блок ячеек В1:С1, автозаполнением вводим все остальные значения аргумента у (за правый нижний угол блока протягиваем до ячейки J1).

Далее вводим значения функции z в соответствии с уравнением (4.1). Для этого табличный курсор необходимо поместить в ячейку В2 и на панели инструментов Стандартная нажать кнопку Вставка > Функции fx. В появившемся диалоговом окне Мастер функций шаг 1 из 2 в поле Категория выбираем Математические. Справа в поле Функция выбираем функцию Корень,нажимаем кнопку ОК и появляется диалоговое окно Корень. В рабочее поле вводим подкоренное выражение: 1- $А2^2/9-В$1^2/4, обратите внимание, что символы $ предназначены для фиксации адреса столбца А - переменной х истроки 1 - переменной у. Нажимаем кнопку ОК. В ячейке В2 появляется #ЧИСЛО! (при х=–3 и у=–2 точек рассматриваемого эллипсоида не существует). Теперь необходимо скопировать функцию из ячейки В2, для чего автозаполнением (протягиванием вправо) копируем эту формулу вначале в диапазон B2:J2, после чего (протягиванием вниз) - в диапазон ВЗ:J14. В результате должна быть получена следующая таблица точек эллипсоида.

Вычисление функций двух переменных - student2.ru

Рис.2.40. Вычисление функции Z

Для построения диаграммы на панели инструментов Стандартная необходимо нажать кнопку Мастер диаграмм. В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4): тип диаграммы указываем тип диаграммы - Поверхность, и вид - Проволочная (прозрачная) поверхность, после чего нажимаем кнопку Далее в диалоговом окне.

В появившемся диалоговом окне Мастер диаграмм (шаг 2 из 4): источник данных диаграммы необходимо выбрать вкладку Диапазон данных и в поле Диапазон мышью указать интервал данных B2:J14.

Далее необходимо указать в строках или столбцах расположены ряды данных. Это определит ориентацию осей х и у. В примере переключатель Ряды в с помощью указателя мыши установим в положение столбцах. Выбираем вкладку Ряд и в поле Подписи оси X указываем диапазон подписей, для чего щелкните в нем указателем мыши и введите диапазон подписей оси х-А2: A14.

Вводим значения подписей оси у, для чего в рабочем поле Ряд указываем первую запись Ряд 1 и в рабочее поле Имя, активизировав его указателем мыши, вводим первое значение переменной у: -2. Затем в поле Ряд указываем вторую запись Ряд 2 и в рабочее поле Имя вводим второе значение переменной у: –1,5. Повторяем таким образом до последней записи - Ряд 9 и после появления требуемых записей нажимаем кнопку Далее.

В третьем окне требуется ввести заголовок диаграммы и названия осей. Для этого необходимо выбрать вкладку Заголовки, щелкнув на ней указателем мыши. Щелкнув в рабочем поле Название диаграммы указателем мыши, ввести с клавиатуры в поле название: Эллипсоид. Затем аналогичным образом ввести в рабочие поля Ось X (категорий), Ось Y (рядов данных) и Ось Z (значений) соответствующие названия: х, у и z. Далее следует нажать кнопку Готово, и после небольшого редактирования будет получена следующая диаграммаэллипсоида (рис.2.41).

Вычисление функций двух переменных - student2.ru

Рис.2.41. Построение эллипсоида

2.8.5. Решение нелинейного уравнения

Решение уравнений средствами Excel является одним из полезных прикладных применений для инженерных задач. Пусть задано следующее квадратное уравнение: 2х2 + 3х – 9 = 0, для определения корней которого необходимо выполнить следующее. Решение уравнения будем формировать в одной из ячеек листа Excel, например в В1, в которую введем искомое значение корня х=0. Исходное уравнение запишем в виде формулы в ячейку В2 (рис.2.42). Для получения решения уравнения вызовем средство Excel Подбор параметра, которое является частью блока задач, иногда называемым инструментом анализа«что-если». Под данным анализом понимают процесс изменения значений ячеек и последующий анализ влияния данных изменений на результат вычисления формулы.

Вызов средства Подбор параметра осуществляется из меню Сервис (рис.2.42).

Вычисление функций двух переменных - student2.ru

Рис.2.42. Окно Подбор параметра

Для подбора определяемого параметра Excel в одной конкретной ячейке изменяет значение (в нашем примере это ячейка В1) до тех пор, пока формула, зависимая от этой ячейки, не возвращает требуемый результат, то есть 0 для рассматриваемого примера (рис.2.43).

Вычисление функций двух переменных - student2.ru

Рис.2.43. Решение уравнения методом подбора результата

В результате решения уравнения Excel сформировал вместо точного результата х=1,5 приближенный результат х=1,499996529, что связано с использованием интерактивных приближенных методов вычислительной математики, полученная погрешность <0,00001. В качестве начального значения в ячейке В1 можно ввести и другое, например 0. Попробуйте самостоятельно рассмотреть и другие варианты.

2.8.6. Решение системы уравнений

Рассмотрим в качестве примера решение системы нелинейных уравнений с двумя неизвестными в ограниченных пределах изменения переменной Х, что часто требуется в экономических задачах:

У=Х2 +2;

Z=3/Х +2.

Решением системы уравнений будет являться точка пересечения двух функций У=F(X) и Z=F(X), а точность определяется выбранным шагом дискретизации переменной Х, переменная Х задана в интервале Х=(0,1-2) с шагом ∆Х=0,1 (рис.2.44).

Вычисление функций двух переменных - student2.ru

Рис.2.44. Решение системы уравнений

Для построения данных функций в столбце А заданы значения переменной Х, в ячейках В2:В21введены формулы для вычисления функции У= Х2 +2, а в ячейках С2:С21 - формулы для вычисления функции Z=3/Х +2. Решением системы уравнений является значение Х= 1,44 на пересечении графиков функций У и Z. Как видно из графиков, более точное решение можно получить при использовании шага ∆Х=0,05.

2.8.7. Численное интегрирование функций

Вначале остановимся кратко на понятии определенный интеграл. Пусть на отрезке [a, b] задана функция y =f(х), и отрезок [a, b] разбит на n элементарных отрезков в точках х0., х1,..., хn.: а = х012<...<хп = b.

На каждом отрезке разбиения [xi-1., xi] выбрана некоторая точка ζi и положено, что ∆xi = xi - xi-1, где i = 1, 2, ..., п. Тогда сумму вида:

Вычисление функций двух переменных - student2.ru

называют интегральной суммой функции y =f(х) на [a, b]. Данная интегральная сумма определяется как способом разбиения отрезка [a, b], так и выбором точек ζ1, ζ2,... ζn = 0 на каждом из отрезков разбиения ∆xi = xi – xi-1, i = 1, 2, ..., n. Обозначим через max ∆xi максимальную из длин отрезков [xi-1, xi], где i = 1, 2, ..., n.

Тогда определенным интегралом от функции y =f(х) на [a, b] называют предел интегральной суммы при стремлении max xi, к нулю, если он существует, конечен и не зависит от способа выбора точек х1, х2,. и точек ζ1 ζ2. Определенный интеграл обозначается как:

Вычисление функций двух переменных - student2.ru

а f(x) называют интегрируемой в пределах [a, b], то есть:

Вычисление функций двух переменных - student2.ru Вычисление функций двух переменных - student2.ru

Число а называют нижним пределом определенного интеграла, число b - его верхним пределом.

Геометрический смысл определенного интеграла заключается в следующем. Если функция y =f(х) неотрицательна на отрезке [a, b], где а < b, то Вычисление функций двух переменных - student2.ru численно равен площади S под кривой у =f(x) на [a, b] .

Действительно, отдельное слагаемое интегральной суммы (1) равно площади Si прямоугольника со сторонами ∆xi и f(x.) (согласно определению значение определенного интеграла не зависит от способа выбора точек ζ1, ζ2,...), где i= 1, 2,... n (рис. 4.45). Поэтому вся интегральная сумма (1) равна площади Si = Si+S2+...+Sn под ломаной, образованной на каждом из отрезков [xi-1, xi] прямыми, параллельными оси абсцисс. При стремлении max ∆xi к нулю ломаная неограниченно приближается к исходной кривой, а площадь под ломаной переходит в площадь под кривой Si = S.

Вычисление функций двух переменных - student2.ru

Рис. 2.45. Графическая интерпретация определенного интеграла

В экономических приложениях определенный интеграл может выражать, например, объем произведенной продукции (и) при известной функции производительности труда f(t):

Вычисление функций двух переменных - student2.ru .

Обычно для нахождения определенного интеграла используется формула Ньютона-Лейбница:

Вычисление функций двух переменных - student2.ru .

Однако применение формулы (3) на практике связано с существенными трудностями, возникающими при нахождении первообразной в случае усложнения подынтегральной функции. Поэтому в приложениях используют так называемые численные методы, позволяющие найти приближенное значение искомого интеграла с требуемой точностью. Этот подход оказывается особенно предпочтительным при использовании компьютеров для нахождения интегралов.

Существует значительное количество численных методов вычисления интегралов. Они основаны на разных способах нахождения площади под кривой f(х):

как суммы элементарных трапеций - метод трапеций:

Вычисление функций двух переменных - student2.ru

,как суммы элементарных прямоугольников - метод прямоугольников:

Вычисление функций двух переменных - student2.ru .

Существуют также метод Симпсона и ряд других.

Формула метода прямоугольников (4) получается, если отрезок интегрирования [a, b] разбить на п равных частей длиной:

Вычисление функций двух переменных - student2.ru

На каждом из отрезков разбиения [xi-1, xi] участок кривой у=f(x) заменяется отрезком прямой, параллельным оси абсцисс. Тогда:

Вычисление функций двух переменных - student2.ru

,где S1, S2,..., Sn - площади прямоугольников на каждом из отрезков разбиения. Отдельное слагаемое Si; равно площади прямоугольника со сторонами ∆x и f(x), где i = 1, 2,..., n. Метод прямоугольников является простейшим, но и наименее точным. Более точно определенный интеграл может быть вычислен по формуле трапеций . В этом случае, в отличие от метода прямоугольников, на каждом из отрезков разбиения [xi-1, xi] участок кривой y=f(x) заменяется хордами, стягивающими концевые точки. Тогда, отдельное слагаемое интегральной суммы Si, равно площади трапеции с основаниями f(xi) и f(xi-1) и высотой Ах, где i = 1, 2,..., n, то есть:

Вычисление функций двух переменных - student2.ru

Складывая площади элементарных трапеций и приводя подобные члены, получаем формулу (5). Погрешность ∆ вычисления определенного интеграла по формуле трапеций S(n):

Вычисление функций двух переменных - student2.ru

может быть оценена из выражения:

Вычисление функций двух переменных - student2.ru ,

где М2 - максимальное значение модуля второй производной f"(x) подынтегральной функции y=f(х) на [a, b].

Рассмотрим пример вычисления интегралов по методу прямоугольников и методу трапеций. Пусть требуется вычислить интеграл с шагом ∆х=0,1:

Вычисление функций двух переменных - student2.ru

Аналитически данный интеграл может быть вычислен просто:

Вычисление функций двух переменных - student2.ru .

Метод прямоугольников. Для нахождения определенного интеграла данным методом необходимо ввести значения подынтегральной функции f(x) в рабочую таблицу Excel в диапазоне хВычисление функций двух переменных - student2.ru[0; 3] с заданным шагом ∆ x=0,1.

1.Составляем таблицу данных х и f(х). Пусть столбец А будет хранить значения х, а второй столбец В – значения функции f(x). Для этого в ячейку А1 вводим слово Аргумент, а в ячейку В1 - слово Функция, в ячейку А2 вводится первое значение аргумента - левая граница диапазона (0), а в ячейку A3 вводится второе значение аргумента - левая граница диапазона плюс шаг построения (0,1). Затем, выделив ячейки А2:АЗ, автозаполнением формируем все значения аргумента (за правый нижний угол блока А2:А3 курсор протягиваем до ячейки А32, до значения х=3).

2.Затем вводим значения подынтегральной функции, в ячейку В2 необходимо записать ее уравнение. Для этого табличный курсор необходимо установить в ячейку В2, ввести формулу =А2^2 и нажимаем Enter. В ячейке В2 появляется 0. Далее необходимо автозаполнением скопировать функцию из ячейки В2 в диапазон В2:В32 и в результате должна быть получена таблица данных для нахождения интеграла.

3.Теперь в ячейке ВЗЗ может быть найдено приближенное значение интеграла, для чего в ячейку ВЗЗ вводим формулу =0,1*, затем вызываем Мастер функций. В поле Функция выбираем функцию Сумм и нажимаем кнопку ОК. В рабочее поле диалогового окнаСУММ мышью определяем диапазон суммирования ВЗ:В32, заполняя поле Число1 и нажимаем кнопку ОК. В ячейке ВЗЗ появляется приближенное значение искомого интеграла (9,455). На рис.4.46. приведен фрагмент таблицы для вычисления интеграла.

Вычисление функций двух переменных - student2.ru

Рис.2.46.Вычисление интеграла

Сравнивая полученное значение с истинным значением вычисления интеграла - 9 можно отметить, что ошибка метода прямоугольников довольно значительна - 0,455.

Метод трапеций.Для нахождения определенного интеграла методом трапеций, как и в случае использования метода прямоугольников, значения подынтегральной функции f(х) должны быть введены в рабочую таблицу в диапазоне х Вычисление функций двух переменных - student2.ru [0; 3) с заданным шагом ∆ х=0,1. Поэтому этапы 1-3 полностью аналогичны этапам предыдущего решения. Поскольку таблица данных для нахождения интеграла уже введена, обсудим только этап 3. В ячейке В34 нужно вычислить приближенное значение интеграла по методу трапеций. Для этого в ячейку В34 вводим формулу =0,1*((В2 + В32)/2, затем вызываем Мастер функций. В рабочем поле диалогового окна Сумм определяем диапазон суммирования ВЗ:В31 и нажимаем кнопку ОК. В результате в ячейке В34 формируется приближенное значение искомого интеграла (9,005). Сравнивая полученное значение интеграла с истинным, можно отметить, что ошибка вычисления методом трапеций является вполне приемлемой - 0,005.

2.8.8. Решение дифференциальных уравнений

Использование дифференциальные уравнений находит широкое применение для компьютерного моделирования динамических процессов в автоматизированных системах управления, в механике, других математических моделях. Практическое применение в различных областях науки и техники находят как обыкновенные дифференциальные уравнения, так и уравнения в частных производных. Ниже будет рассмотрен пример решения обыкновенных дифференциальных уравнений с заданными начальными условиями, то есть для таких уравнений значения функции и ее производных до n-1 порядка являются известными при Х=0. Для обыкновенных дифференциальных уравнений,как правило, решается задача Коши, то есть задаются уравнения вида y¢=f (x,y) с начальными условиями x0, y0 при x0 ≤ x ≤ xкон.

Численное решение таких уравнений заключается в разбиении интервала х точками xi с шагом h для i=1,2,…n и нахождении значений yi по формуле yi = yi-1 + ∆yi, где ∆yi - приращение переменной у на каждом шаге.

Формула данного приращения определяется выбранным численным методом, Для метода Эйлера ∆yi = h∙f(xi,yi), а в инженерных методах (Рунге-Кутта и других) она записывается более сложным образом. При этом уравнение 2-го и более высоких порядков предварительно должны быть сведены к нормальной системе обыкновенных дифференциальных уравнений 1-го порядка. Так уравнение y''=xy' +y2 с начальными условиями x0 =0, y0 =3, y' =1 преобразуется к системе двух уравнений 1-го порядка:

y1' =y2, y2' =xy2 + y12

с начальными условиями y10 = 3, y20 = 1.

Один из вариантов решения этой системы обыкновенных дифференциальных уравнений на интервале (0, 1) с шагом 0, 1 методом Эйлера приведен на рис.2.47.

Вычисление функций двух переменных - student2.ru

Рис.2.47. Решение дифференциального уравнения

В столбце А создан диапазон изменения аргумента х от 0 до 1 с шагом 0, 1. Столбец В содержит вычисленные по формуле Эйлера значения Y1(=B2 + 0,1*C2), столбец С – значения Y2 (=C2 + 0,1*(A2*C2+B2^2)).

Графики изменения функций Y1(х) и Y2(х) представлены на диаграмме.

2.8.9. Финансовые вычисления в Excel

Для выполнения различных финансовых вычислений Excel содержит группу финансовых функций, реализуемых с помощью Мастера функций. Они включают такие функции как: вычисление амортизации активов, ставку доходности по вкладу, вычисление процентов за определенный инвестиционный период и многие другие. Ниже рассмотрим примеры реализации некоторых финансовых функций.

Наши рекомендации