Диаграммы потоков данных
Диаграммы потоков данных (DFD) являются основным средством функционального моделирования проектируемой системы. Для изображения DFD традиционно используются две различные нотации: Йордана (Yourdon) и Гейна-Сарсона (Gane-Sarson).
В соответствии с методологией модель системы определяется как иерархия диаграмм потоков данных, описывающих процесс преобразования информации от её ввода в систему до выдачи пользователю. С помощью этих диаграмм система разбивается на функциональные компоненты (процессы) и представляются в виде сети, связанной потоками данных. Главная цель таких средств — продемонстрировать, как каждый процесс преобразует входные данные в выходные, а также выявить отношения между этими процессами. Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы ИС с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут такой уровень декомпозиции, на котором процесс становятся элементарными и детализировать их далее невозможно. Внешняя сущность - информационная структура вне контекста системы, являющуюся источником или приёмником данных. Данные, при помощи потоков данных, являющиеся механизмами, для моделирования передачи информации из одной части системы в другую. Продуцирование выходных потоков из входных осуществляется информационными процессами. Хранилище данных позволяет на определённых участках определять данные, которые будут сохраняться в памяти между процессами.
Задача множества DFD заключается в том, чтобы осуществить правильную декомпозицию системы, с целью показать функционирование системы ясными и понятными на каждом уровне детализации (рис.2.3).
Рис. 2.3.Потоки данных в DFD
Процесс построения модели разбивается на следующие этапы:
· Расчленение множества требований и организация их в основные функциональные группы.
· Идентификация внешних объектов, с которыми система должна быть связана.
· Идентификация основных видов информации, циркулирующей между системой и внешними объектами.
· Формирование DFD первого уровня на базе процессов предварительной контекстной диаграммы.
· Проверка основных требований по DFD первого уровня.
Декомпозиция каждого процесса текущей DFD с помощью детализирующей диаграммы или спецификации процесса. Проверка основных требований по DFD соответствующего уровня. Добавление определений новых потоков в словарь данных при каждом их появлении на диаграммах.
После построения двух-трёх уровней проведение ревизии с целью проверки корректности и улучшения понимаемости модели.
Модели данных
Диаграммы "сущность – связь" (ERD) предназначены для разработки моделей данных и обеспечивают стандартный способ определения данных и отношений между ними. С помощью ERD осуществляется детализация хранилищ данных проектируемой системы, а также документируются сущности системы и способы их взаимодействия, включая идентификацию объектов, важных для предметной области сущностей, свойств этих объектов (атрибутов) и их отношений с другими объектами.
Объектно-ориентированные методы анализа
Важное место в разработках АСУП занимают объектно-ориентированные методологии, основанные на объектной декомпозиции предметной области, представляемой в виде совокупности объектов, взаимодействующих между собой посредством передачи сообщений. Авторы известных методологий Буч (Booch), Рамбо (Rumbaugh) и Якобсон (Jacobson) объединились с целью выработки унифицированной методологии, получившей название UML (Unified Modeling Language). При создании UML его авторы руководствовались целями ускорения эволюции наиболее популярных методологий в направлении сближения их друг с другом, обобщения накопленного опыта их использования, обеспечения стабильности проектов на основе единого целостного метода.
Эвристические методы
Эвристические методы получили в АСУП достаточно широкое распространение, и дальнейший прогресс в этом направлении связан с разработкой и внедрением экспертных систем. Экспертные системы позволяют накапливать базы знаний о производственном процессе, об эффективных управляющих решениях и на этой основе предлагать рациональные решения задач, слабо поддающихся формализации.
Круг экономико-математических моделей и методов чрезвычайно широк. Их применение сдерживается затрудненностью адекватного описания производственного процесса, получения решений в условиях высокой размерности задач, а также отсутствием необходимой для этого случая квалификации управленческого персонала.
Ниже перечислены модели и методы решения частных задач управления предприятиями, включаемые в базовые системы типа ЕКР:
· для решения задач стратегического планирования применяются модели линейного программирования;
· оперативное планирование построено, как правило, на базе сетевых моделей. В этом случае используются методы расчёта критического пути ПЕРТ;
· для решения задач прогнозирования спроса и других экономических процессов применяются методы регрессионного анализа, анализа временных рядов, процедуры обработки экспертных оценок;
· при решении задач планирования объёмов продаж и производства используются методы линейного программирования; задача формирования графика выпуска продукции может быть сформулирована как задача минимизации совокупного производственного цикла при ограничениях по мощностям, где в качестве переменных выступают сроки запуска (выпуска). В базовых системах типа ЕКР имеются процедуры, позволяющие решить эту задачу путём генерирования, анализа и отсеивания вариантов с одновременным сокращением числа переменных на каждой итерации;
· задача расчёта материальных потребностей на обеспечение графика выпуска продукции решается на основе модели разузлования, в ходе которого выполняется обсчёт сетевой структуры, описывающей состав изделия.
Оперативное управление производством в ERP базируется на применении приоритетов и эвристических методов для построения расписаний работ. Нормативная база может формироваться с применением статистических методов.