Конъюнкция Дизъюнкция Импликация Эквиваленция
a | b | a∧b | a | b | a∨b | a | b | a→b | a | b | a↔b | |||||||
Алгоритм составления таблиц истинности.
1) Подсчитать количество логических переменных n
2) Подсчитать количество строк m=2^n
3) Количество столбцов = n+ количество логических операция
Соверше́нная дизъюнкти́вная норма́льная фо́рма (СДНФ) — это такая ДНФ, которая удовлетворяет трём условиям:
· в ней нет одинаковых элементарных конъюнкций
· в каждой конъюнкции нет одинаковых пропозициональных букв
· каждая элементарная конъюнкция содержит каждую пропозициональную букву из входящих в данную ДНФ пропозициональных букв, причём в одинаковом порядке.
Для любой функции алгебры логики существует своя СДНФ, причём единственная.
Для того, чтобы получить СДНФ функции, требуется составить её таблицу истинности. К примеру, возьмём одну из таблиц истинности статьи минимизация логических функций методом Квайна, в которой нахождение СДНФ встречается несколько раз:
В ячейках результата отмечаются лишь те комбинации, которые приводят логическое выражение в состояние единицы. Далее рассматриваются значения переменных при которых функция равна 1. Если значение переменной равно 0, то она записывается с инверсией. Если значение переменной равно 1, то без инверсии.
Первая строка содержит 1 в указанном поле. Отмечаются значения всех четырёх переменных, это:
·
·
·
·
Нулевые значения — тут все переменные представлены нулями — записываются в конечном выражении инверсией этой переменной. Первый член СДНФ рассматриваемой функции выглядит так:
Переменные второго члена:
·
·
·
·
в этом случае будет представлен без инверсии:
Таким образом анализируются все ячейки . Совершенная ДНФ этой функции будет дизъюнкцией всех полученных членов (элементарных конъюнкций).
Совершенная ДНФ этой функции:
Соверше́нная конъюнкти́вная норма́льная фо́рма (СКНФ) — это такая КНФ, которая удовлетворяет трём условиям:
· в ней нет одинаковых элементарных дизъюнкций
· в каждой дизъюнкции нет одинаковых пропозициональных переменных
· каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.
Пример нахождения СКНФ[править | править исходный текст]
Для того, чтобы получить СКНФ функции, требуется составить её таблицу истинности. К примеру, возьмём одну из таблиц истинности статьи минимизация логических функций методом Квайна:
В ячейках строки́ отмечаются лишь те комбинации, которые приводят логическое выражение в состояние нуля.
Четвёртая строка содержит 0 в указанном поле. Отмечаются значения всех четырёх переменных, это:
·
·
·
·
В дизъюнкцию записывается переменная без инверсии, если она в наборе равна 0, и с инверсией, если она равна 1. Первый член СКНФ рассматриваемой функции выглядит так:
Остальные члены СКНФ составляются по аналогии.