Свопинг и виртуальная память
Необходимым условием для того, чтобы программа могла выполняться, является ее нахождение в оперативной памяти. Только в этом случае процессор может извлекать команды из памяти и интерпретировать их, выполняя заданные действия. Объем оперативной памяти, который имеется в компьютере, существенно сказывается на характере протекания вычислительного процесса. Он ограничивает число одновременно выполняющихся программ и размеры их виртуальных адресных пространств. В некоторых случаях, когда все задачи мультипрограммной смеси являются вычислительными (то есть выполняют относительно мало операций ввода-вывода, разгружающих центральный процессор), для хорошей загрузки процессора может оказаться достаточным всего 3-5 задач. Однако если вычислительная система загружена выполнением интерактивных задач, то для эффективного использования процессора может потребоваться уже несколько десятков, а то и сотен задач. Эти рассуждения хорошо иллюстрирует рис. 5.11, на котором показан график зависимости коэффициента загрузки процессора от числа одновременно выполняемых процессов и доли времени, проводимого этими процессами в состоянии ожидания ввода-вывода.
. Зависимость загрузки процессора от числа задач и интенсивности ввода-вывода
Большое количество задач, необходимое для высокой загрузки процессора, требует большого объема оперативной памяти. В условиях, когда для обеспечения приемлемого уровня мультипрограммирования имеющейся оперативной памяти недостаточно, был предложен метод организации вычислительного процесса, при котором образы некоторых процессов целиком или частично временно выгружаются на диск.
В мультипрограммном режиме помимо активного процесса, то есть процесса, коды которого в настоящий момент интерпретируются процессором, имеются приостановленные процессы, находящиеся в ожидании завершения ввода-вывода или освобождения ресурсов, а также процессы в состоянии готовности, стоящие в очереди к процессору. Образы таких неактивных процессов могут быть временно, до следующего цикла активности, выгружены на диск. Несмотря на то что коды и данные процесса отсутствуют в оперативной памяти, ОС «знает» о его существовании и в полной мере учитывает это при распределении процессорного времени и других системных ресурсов. К моменту, когда подходит очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память. Если при этом обнаруживается, что свободного места в оперативной памяти не хватает, то на диск выгружается другой процесс.
Такая подмена (виртуализация) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования — объем оперативной памяти компьютера теперь не столь жестко ограничивает количество одновременно выполняемых процессов, поскольку суммарный объем памяти, занимаемой образами этих процессов, может существенно превосходить имеющийся объем оперативной памяти. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память, размер которой намного превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программу, а транслятор, используя виртуальные адреса, переводит ее в машинные коды так, как будто в распоряжении программы имеется однородная оперативная память большого объема. В действительности же все коды и данные, используемые программой, хранятся на дисках и только при необходимости загружаются в реальную оперативную память. Понятно, однако, что работа такой «оперативной памяти» происходит значительно медленнее.
Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач:
§ размещение данных в запоминающих устройствах разного типа, например часть кодов программы — в оперативной памяти, а часть — на диске;
§ выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно;
§ перемещение по мере необходимости данных между памятью и диском; Q преобразование виртуальных адресов в физические.
Очень важно то, что все действия по организации совместного использования диска и оперативной памяти ••*• выделение места для перемещаемых фрагментов, настройка адресов, выбор кандидатов на загрузку и выгрузку — осуществляются операционной системой и аппаратурой процессора автоматически, без участия программиста, и никак не сказываются на логике работы приложений.
ПРИМЕЧАНИЕ
Уже достаточно давно пользователи столкнулись с проблемой размещения в памяти программы, размер которой превышает имеющуюся в наличии свободную память. Одним из первых решений было разбиение программы на части, называемые оверлеями. Когда первый оверлей заканчивал свое выполнение, он вызывал другой оверлей. Все оверлеи хранились на диске и перемещались между памятью и диском средствами операционной системы на основании явных директив программиста, содержащихся в программе. Этот способ, несмотря на внешнее сходство, имеет принципиальное отличие от виртуальной памяти, заключающееся в том, что разбиение программы на части и планирование их загрузки в оперативную память должны были выполняться заранее программистом во время написания программы.
Виртуализация памяти может быть осуществлена на основе двух различных подходов:
§ свопинг (swapping) — образы процессов выгружаются на диск и возвращаются в оперативную память целиком;
§ виртуальная память (virtual memory) — между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов процессов.
Свопинг представляет собой частный случай виртуальной памяти и, следовательно, более простой в реализации способ совместного использования оперативной памяти и диска. Однако подкачке свойственна избыточность: когда ОС решает активизировать процесс, для его выполнения, как правило, не требуется загружать в оперативную память все его сегменты полностью — достаточно загрузить небольшую часть кодового сегмента с подлежащей выполнению инструкцией и частью сегментов Данных, с которыми работает эта инструкция, а также отвести место под сегмент стека. Аналогично при освобождении памяти для загрузки нового процесса очень часто вовсе не требуется выгружать другой процесс на диск целиком, достаточно вытеснить на диск только часть его образа. Перемещение избыточной информации замедляет работу системы, а также приводит к неэффективному использованию памяти. Кроме того, системы, поддерживающие свопинг, имеют еще один очень существенный недостаток: они не способны загрузить для выполнения процесс, виртуальное адресное пространство которого превышает имеющуюся в наличии свободную память.
1 В некоторых современных ОС, например версиях UNIX, основанных на коде SVR4, механизм свопинга используется как дополнительный к виртуальной памяти, включающийся только при серьезных перегрузках системы.
Именно из-за указанных недостатков свопинг как основной механизм управления памятью почти не используется в современных ОС1. На смену ему пришел более совершенный механизм виртуальной памяти, который, как уже было сказано, заключается в том, что при нехватке места в оперативной памяти на диск выгружаются только части образов процессов.
Ключевой проблемой виртуальной памяти, возникающей в результате многократного изменения местоположения в оперативной памяти образов процессов или их частей, является преобразование виртуальных адресов в физические. Решение этой проблемы, в свою очередь, зависит от того, какой способ структуризации виртуального адресного пространства принят в данной системе управления памятью. В настоящее время все множество реализаций виртуальной памяти может быть представлено тремя классами.
§ Страничная виртуальная память организует перемещение данных между памятью и диском страницами — частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера.
§ Сегментная виртуальная память предусматривает перемещение данных сегментами — частями виртуального адресного пространства произвольного размера, полученными с учетом смыслового значения данных,
§ Сегментно-страничная виртуальная память использует двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения данных здесь является страница. Этот способ управления памятью объединяет в себе элементы обоих предыдущих подходов.
Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный файл, которые во многих ОС по традиции продолжают называть областью, или файлом свопинга, хотя перемещение информации между оперативной памятью и диском осуществляется уже не в форме полного замещения одного процесса другим, а частями. Другое популярное название этой области — страничный файл (page file, или paging file). Текущий размер страничного файла является важным параметром, оказывающим влияние на возможности операционной системы: чем больше страничный файл, тем больше приложений может одновременно выполнять ОС (при фиксированном размере оперативной памяти). Однако необходимо понимать, что увеличение числа одновременно работающих приложений за счет увеличения размера страничного файла замедляет их работу, так как значительная часть времени при этом тратится на перекачку кодов и данных из оперативной памяти на диск и обратно. Размер страничного файла в современных ОС является настраиваемым параметром, который выбирается администратором системы для достижения компромисса между уровнем мультипрограммирования и быстродействием системы.
Страничное распределение
На рис. 5.12 показана схема страничного распределения памяти. Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами (virtual pages). В общем случае размер виртуального адресного пространства процесса не кратен размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.
Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками, или кадрами). Размер страницы выбирается равным степени двойки: 512, 1024, 4096 байт и т. д. Это позволяет упростить механизм преобразования адресов.
Страничное распределение памяти
При создании процесса ОС загружает в оперативную память несколько его виртуальных страниц (начальные страницы кодового сегмента и сегмента данных). Копия всего виртуального адресного пространства процесса находится на диске. Смежные виртуальные страницы не обязательно располагаются в смежных физических страницах. Для каждого процесса операционная система создает таблицу страниц — информационную структуру, содержащую записи обо всех виртуальных страницах процесса.
Запись таблицы, называемая дескриптором страницы, включает следующую информацию:
§ номер физической страницы, в которую загружена данная виртуальная страница;
§ признак присутствия, устанавливаемый в единицу, если виртуальная страница находится в оперативной памяти;
§ признак модификации страницы, который устанавливается в единицу всякий раз, когда производится запись по адресу, относящемуся к данной странице;
§ признак обращения к странице, называемый также битом доступа, который устанавливается в единицу при каждом обращении по адресу, относящемуся к данной странице.
Признаки присутствия, модификации и обращения в большинстве моделей современных процессоров устанавливаются аппаратно, схемами процессора при выполнении операции с памятью. Информация из таблиц страниц используется для решения вопроса о необходимости перемещения той или иной страницы между памятью и диском, а также для преобразования виртуального адреса в физический. Сами таблицы страниц, так же как и описываемые ими страницы, размещаются в оперативной памяти. Адрес таблицы страниц включается в контекст соответствующего процесса. При активизации очередного процесса операционная система загружает адрес его таблицы страниц в специальный регистр процессора.
При каждом обращении к памяти выполняется поиск номера виртуальной страницы, содержащей требуемый адрес, затем по этому номеру определяется нужный элемент таблицы страниц, и из него извлекается описывающая страницу информация1. Далее анализируется признак присутствия, и, если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический, то есть виртуальный адрес заменяется указанным в записи таблицы физическим адресом. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания, и активизируется другой процесс из очереди процессов, находящихся в состоянии готовности. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу (для этого операционная система должна помнить положение вытесненной страницы в страничном файле диска) и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то на основании принятой в данной системе стратегии замещения страниц решается вопрос о том, какую страницу следует выгрузить из оперативной памяти.
После того как выбрана страница, которая должна покинуть оперативную память, обнуляется ее бит присутствия и анализируется ее признак модификации. Если выталкиваемая страница за время последнего пребывания в оперативной памяти была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то принимается во внимание, что на диске уже имеется предыдущая копия этой виртуальной страницы, и никакой записи на диск не производится. Физическая страница объявляется свободной. Из соображений безопасности в некоторых системах освобождаемая страница обнуляется, с тем чтобы невозможно было использовать содержимое выгруженной страницы.