Классификация интеллектуальных систем
В соответствии с перечисленными признаками ИИС делятся на (рис. 1), данная классификация одна из возможных:
системы с коммутативными способностями (с интеллектуальным интерфейсом);
экспертные системы (системы для решения сложных задач);
самообучающиеся системы (системы способные к самообучению);
адаптивные системы (адаптивные информационные системы).
Рис.1 . Классификация интеллектуальных информационных систем по типам систем.
Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных.
Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль - разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ - установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.
Естественно-языковый интерфейс используется для:
доступа к интеллектуальным базам данных;
контекстного поиска документальной текстовой информации;.
голосового ввода команд в системах управления;
машинного перевода с иностранных языков.
Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей помимо текстовой и цифровой информации.
Системы контекстной помощи можно рассматривать как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).
Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические -образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.
Экспертных систем предназначены для решения задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области.
Многоагентные системы.Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе
Для многоагентных систем характерны следующие особенности:
1. Проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий;
2. Распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний;
3. Применение множества стратегий работы механизма вывода включений в зависимости от типа решаемой проблемы;
4. Обработка больших массивов данных, содержащихся в базе данных;
5. Использование различных математических моделей и внешних процедур, хранимых в базе моделей;
6. Способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем.
В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики.
Характерными признаками самообучающихся систем являются:
самообучающиеся системы "с учителем", когда для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака);
самообучающиеся системы "без учителя", когда по степени близости значений признаков классификации система сама выделяет классы ситуаций.
Индуктивные системы используют обобщение примеров по принципу от частного к общему. Процесс классификации примеров осуществляется следующим образом:
1. Выбирается признак классификации из множества заданны (либо последовательно, либо по какому-либо правилу, например, в соответствии с максимальным числом получаемых подмножеств примеров)
2. По значению выбранного признака множество примеров разбивается на подмножества
3. Выполняется проверка, принадлежит ли каждое образовавшееся подмножество примеров одному подклассу
4. Если какое-то подмножество примеров принадлежит одном подклассу, т.е. у всех примеров подмножества совпадает значение классообразующего признака, то процесс классификации заканчиваете (при этом остальные признаки классификации не рассматриваются)
5. Для подмножеств примеров с несовпадающим значение классообразующего признака процесс классификации продолжаете, начиная с пункта 1. (Каждое подмножество примеров становится классифицируемым множеством).
Нейронные сети представляют собой устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров. Каждый процессор такой сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам.
В экспертных системах, основанных на прецедентах (аналогиях), база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты.
Поиск решения проблемы в экспертных системах основанных на прецедентах сводится к поиску по аналогии (т.е. абдуктивный вывод от частного к частному).
В отличие от интеллектуальной базы данных информационное хранилище представляет собой хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного ситуационного анализа данных (реализации OLAP - технологии).
Типичными задачами оперативного ситуационного анализа являются:
определение профиля потребителей конкретных объектов хранения;
предсказание изменений объектов хранения во времени;
анализ зависимостей признаков ситуаций (корреляционный анализ).
Адаптивная информационная система - это информационная система, которая изменяет свою структуру в соответствии с изменением модели проблемной области.
При этом адаптивная информационная система должна:
1. в каждый момент времени адекватно поддерживать организацию бизнес-процессов;
2. проводить адаптацию всякий раз, как возникает потребность в реорганизации бизнес-процессов;
3. реконструкция информационной системы должна проводиться быстро и с минимальными затратами.
Ядром адаптивной информационной системы является постоянно развиваемая модель проблемной области (предприятия), поддерживаемая в специальной базе знаний - репозитории, на основе которого осуществляется генерация или конфигурация программного обеспечения. Таким образом, проектирование и адаптация ИС сводится, прежде всего, к построению модели проблемной области и ее своевременной корректировке.
Так как нет общепринятого определения, четкую единую классификацию интеллектуальных информационных систем дать затруднительно.
Если рассматривать интеллектуальные информационные системы с точки зрения решаемой задачи, то можно выделить системы управления и справочные системы, системы компьютерной лингвистики, системы распознавания, игровые системы и системы создания интеллектуальных информационных систем (рис.2).
При этом системы могут решать не одну, а несколько задач или в процессе решения одной задачи решать и ряд других. Например, при обучении иностранному языку система может решать задачи распознавания речи обучаемого, тестировать, отвечать на вопросы, переводить тексты с одного языка на другой и поддерживать естественно-языковой интерфейс работы.
Рис.2 .Классификация интеллектуальных информационных систем по решаемым задачам
Если классифицировать интеллектуальные информационные системы по критерию «используемые методы», то они делятся на жесткие, мягкие и гибридные (рис.3).
Мягкие вычисления – это сложная компьютерная методология, основанная на нечеткой логике, генетических вычислениях, нейрокомпьютинге и вероятностных вычислениях. Жесткие вычисления – традиционные компьютерные вычисления (не мягкие). Гибридные системы – системы, использующие более чем одну компьютерную технологию (в случае интеллектуальных систем – технологии искусственного интеллекта).
Рис.3. Классификация интеллектуальных информационных систем по методам
Возможны и другие классификации, например, выделяют системы общего назначения и специализированные системы (рис. 4).
Рис. 4. Классификация интеллектуальных систем по назначению
Кроме того, эта схема отражает еще один вариант классификации по методам: системы, использующие методы представления знаний, самоорганизующиеся системы и системы, созданные с помощью эвристического программирования. Также в этой классификации системы генерации музыки отнесены к системам общения.
К интеллектуальным системам общего назначения относятся системы, которые не только исполняют заданные процедуры, но на основе метапроцедур поиска генерируют и исполняют процедуры решения новых конкретных задач.
Специализированные интеллектуальные системы выполняют решение фиксированного набора задач, предопределенного при проектировании системы.
Отсутствие четкой классификации также объясняется многообразием интеллектуальных задач и интеллектуальных методов, кроме того, искусственный интеллект активно развивающаяся наука, в которой новые прикладные области осваиваются ежедневно.