Становление фотографической техники и технологии
Фотография – это теория и методы получения видимого изображения объектов на светочувствительных фотографических материалах – галогенсеребряных (AgHal) и несеребряных.
Первоначально фотография возникла как способ фиксации портретных или создание натурных изображений, который занимал намного меньше времени, чем написание картины художником. Появление кино и цветной фотографии значительно увеличило ее возможности, и в ХХ веке фотография стала одним из важнейших средств информации и документирования. Разнообразие задач, решаемых с помощью фотографии, позволяет считать её одновременно разделом науки, техники и искусства.
Широкое применение фотографии в жизни человека определяет и ее многоплановость. Различают фотографию черно - белую и цветную, художественную и научно - техническую (аэрофотография, микрофотография, рентгеновская, инфракрасная и др.), плоскостную и объёмную. Понятно, что любое фотографическое изображение само по себе является плоским, а его объёмность (в частности, в стереоскопической фотографии) достигается одновременной съёмкой объекта с двух близких точек и последующим рассматриванием сразу двух снимков (при этом каждого из них только одним глазом). Совершенно особым видом объёмной фотографии является голография: здесь способ записи оптической информации иной, чем в обычной фотографии.
Истоки фотографии восходят к концу XV века, когда художники, в том числе и Леонардо да Винчи, использовали камеру - обскуру для проектирования изображения на бумагу или холст, которое затем зарисовывали.
Фотография же в собственном смысле слова возникла намного позже. Прошло более трехсот лет, прежде чем появились сведения о светочувствительности некоторых веществ и возникли приёмы использования и сохранения изменений в таких веществах под действием света. В числе первых светочувствительных веществ в XVIII веке были открыты и исследованы соли серебра. В 1802 году Т. Уэджвуд в Великобритании получил изображение на слое азотнокислого серебра (AgNO3), но не смог его закрепить.
Датой рождения фотографии принято считать 7 января 1839 года, когда французский физик Д.Ф. Араго (1786 – 1853) сообщил Парижской академии наук об изобретении художником и изобретателем Л.Ж.М. Дагером (1787 – 1851) практически приемлемого способа фотографии, названного им дагеротипией. Однако этому процессу предшествовали опыты французского изобретателя Ж.Н. Ньепса (1765 – 1833), связанные с поиском способов фиксирования изображения предметов, получаемого под действием света. Так, первый сохранившийся отпечаток городского пейзажа, сделанный с помощью камеры - обскуры, был получен им в еще 1826 году. В качестве светочувствительного слоя, наносимого на оловянную, медную или посеребрённую пластинки, Ньепс использовал раствор асфальта в лавандовом масле. В 1827 году он направил в Британское Королевское общество «Записку по гелиографии», в которой сообщал о своем изобретении, и образцы своих работ. В 1829 году Ньепс заключил с Дагером договор об образовании коммерческого предприятия «Ньепс - Дагер» для совместной работы над усовершенствованием их способа. Дагер, продолжая разработки Ньепса, открыл в 1835 году способность паров ртути проявлять скрытое изображение на экспонированной йодированной несеребряной пластине, а в 1837 году уже зафиксировал видимое изображение. Разница в светочувствительности по сравнению с процессом Ньепса при использовании хлористого серебра составляла 1:120.
Расцвет дагеротипии относится к 40 - 60 - м годам XIX века. Почти одновременно с Дагером о другом способе фотографии – калотипии (талботипии) сообщил английский учёный У.Г.Ф. Талбот (1800 – 1877). К фотографическим опытам он приступил в 1834 году и в 1835 году получил фотографию с помощью предложенного им ранее «фотогенического рисования». Патент на этот способ был выдан в 1841 году. В январе 1839 года, узнав об изобретении Дагера, Талбот попытался доказать свой приоритет. Его брошюра «Доклад по искусству фотогенического рисования, или Процесс, с помощью которого естественные объекты могут быть изображены без помощи кисти художника» явилась первой в мире публикацией по фотографии (вышла
21 февраля 1839 г.). Существенным недостатком «фотогенического рисования» было длительное экспонирование.
Сходство способов Дагера и Талбота ограничивалось использованием йодистого серебра в качестве фотослоя. В остальной технологии способы сильно различались: в дагеротипии получалось сразу позитивное зеркально отражающее серебряное изображение, что упрощало процесс, но делало невозможным получение копий, а в калотипии Талбота изготовлялся негатив,
с помощью которого можно было делать любое число отпечатков. Т.е. способ Талбота, представляющий двухстепенную негативно - позитивную последовательность процесса, стал прототипом современной фотографии.
Во времена Ньепса, Дагера и Талбота еще не было термина «фотография». Это понятие получило право на существование только в 1878 году, когда было внесено в «Словарь Французской академии». Большинство историков фотографии считают, что термин «фотография» был впервые использован англичанином Дж. Гершелем 14 марта 1839 году. Однако существует и иное мнение: впервые этот термин был использован немецким астрономом Иоганном фон Мадлером (25 февраля 1839 года.).
Наряду с разработкой химико - фотографических процессов Дагер, Талбот и другие ученые работали над созданием и развитием фотографических аппаратов. Первые фотокамеры, разработанные ими, имели значительные размеры и массу. Так, камера Л.Ж.М. Дагера весила более 50 кг. Ф. Талбот, применяя объективы с более коротким фокусным расстоянием, смог изготовить камеры меньших размеров. Француз А. Селье в 1839 году сконструировал фотокамеру со складывающимся мехом, а также штатив и шаровую головку к нему, светозащитный тент, укладочный ящик, в который помещалось всё снаряжение фотографа.
В 1841 году в Германии П.В.Ф. Фойхтлендер изготовил первую металлическую фотокамеру, оснащённую светосильным объективом И. Петцваля. Таким образом, конструкция большинства фотоаппаратов того периода представляла собой бокс - камеру, состоявшую из ящика с тубусом, в который был встроен объектив (фокусировка производилась выдвижением объектива), или камеру, состоявшую из двух ящиков, перемещавшихся один относительно другого (объектив устанавливался на передней стенке одного из ящиков). Дальнейшая эволюция фототехники для съёмок была связана с широким интересом к фотографии, что привело к разработке более лёгкого и транспортабельного фотоаппарата, получившего название дорожного, а также фотокамер разных типов и конструкций.
Одновременно с модернизацией и совершенствованием фотографической техники шло развитие и химической технологии фотографии. Дагеротипия и талботипия уходят в прошлое. В 60 - 70 - х годах XIX века получает широкое распространение мокрый коллодионный процесс, который был предложен в 1851 году английским скульптором Ф.С. Арчером (1813 – 1857). Суть его состояла в том, что на стеклянную пластинку непосредственно перед фотографированием наносился раствор коллодиона, содержавший йодид калия. Однако малая светочувствительность фотослоя, необходимость приготовления его непосредственно перед съёмкой, а также то, что такая пластинка могла быть использована только в мокром состоянии, являлись существенными недостатками метода, к тому же применение его ограничивалось портретными работами в павильонах.
Активные разработки по повышению светочувствительности и созданию сухих фотослоев привели к появлению сухих броможелатиновых пластинок. Это открытие сделал английский врач Р.Л. Мэддокс (1816 – 1902), опубликовавший в 1871 году статью «Эксперимент с желатиновым бромидом» о применении желатина вместо коллодиона в качестве связующего компонента для бромида серебра. Введение сухих бромосеребряных пластинок позволило разделить процесс фотографии на два этапа: изготовление фотослоев и использование готовых фотоматериалов для получения негативных и позитивных изображений.
80 - е годы стали началом периода развития современной фотографии. Этому в значительной мере способствовало получение фотоматериалов достаточно высокой чувствительности. Действительно, если при гелиографии выдержка составляла шесть часов, дагеротипии – тридцать минут, калотипии – три минуты, мокром коллодионном процессе – десять секунд, то с применением бромосеребряной желатиновой эмульсии она уменьшалась до 1/100 секунды.
Важную роль в развитии фотографии на галогенсеребряных фотослоях сыграло открытие в 1873 году немецким учёным Г. Фогелем (1834 – 1898) оптической сенсибилизации (от лат. sensibilis – чувствительный). Он установил, что расширение спектральной области чувствительности слоев можно достичь введением в них красителей, поглощающих свет более длинных волн, чем галогениды серебра, которые избирательно чувствительны только к голубым, синим и фиолетовым лучам, т.е. коротковолновым лучам. Фогель показал, что добавление в эмульсию жёлто - красного красителя кораллина приводит к увеличению чувствительности к зелёным и жёлтым лучам. Спектральная сенсибилизация позволила не только улучшить передачу цветов при фотографировании, но и стала шагом в развитии цветной фотографии. Таким образом, к концу XIX века ломкие и тяжёлые стеклянные пластинки были заменены фотоматериалом на эластичной, лёгкой и прозрачной основе, инертной к химикатам.
Американский фотолюбитель Г.В. Гудвин (182 – 1900) стал изобретателем фотоплёнки. В 1887 году подал заявку на изобретение «Фотографическая плёнка и процесс её производства». Создание фотоплёнки, а затем разработка Дж. Истменом (1854 – 1933) системы фотографии с использованием данного фотоматериала привели к изменениям в фотопромышленности, сделали фотографию доступной массовому потребителю как технически, так и экономически. Это изобретение имело очень большое будущее. Так,
к 70 - м годам ХХ века около 90% всех выпускаемых AgHal - фотоматериалов составляли фотоплёнки. В современном ассортименте фотоматериалов плёнки обычно являются негативными, бумаги – позитивными.
В современной фотографии распространение получил также и вариант черно - белой фотографии на AgHal - слое, основанный на процессе с «диффузионным переносом». В нашей стране этот процесс реализован в фотосистеме «Момент», за рубежом такие системы впервые разработала фирма «Поляроид» (США). Система включает крупноформатную (размер кадра 9 х 12 см) камеру, негативную AgHal - фотоплёнку, обрабатывающий раствор многоцелевого назначения, равномерно наносимый на поверхность плёнки при её перемотке в камере сразу после экспонирования, и приёмный, позитивный слой, прикатываемый к проявляющемуся негативному слою при той же перемотке. Вследствие высокой вязкости раствора процесс обработки является практически сухим и позволяет получать, не вынимая негативную плёнку из камеры, готовый высушенный отпечаток на приёмном слое за время порядка минуты после съёмки.
Особую группу процессов на AgHal - фотослоях составляют процессы цветной фотографии. Их первоначальные этапы те же, что и в черно - белой фотографии, включая возникновение скрытого изображения и его проявление. Однако материалом окончательного изображения служит не проявленное серебро, а совокупность трёх красителей, образование и количество которых на каждом участке фотослоя контролируются проявленным серебром, само серебро впоследствии удаляется из изображения. Как и в черно - белой фотографии, здесь существуют как раздельный негативно - позитивный процесс с печатью позитивов либо на специальной цветной фотобумаге, либо на плёнке, так и прямой позитивный процесс на обращаемых цветных фото-
материалах.
Цветная фотография стала крупным шагом в развитии фотографических технологий. Первым, кто еще в1861 году указал на возможность применения цветовоспроизведения в фотографии, был английский физик
Дж. К. Максвелл. Опираясь на трёхкомпонентную теорию цветового зрения, он предложил получать тот или иной заданный цвет. Согласно Максвеллу, любая многоцветная картинка может быть подвергнута цветоделению на синий, зелёный и красный диапазоны видимого спектра. Затем аддитивным синтезом указанные лучи могли быть спроецированы на экран. Результаты проведенных экспериментов показали, что, например, свет с преобладанием синих и зелёных лучей образует на экране голубой цвет, синих и красных – пурпурный, зелёных и красных – жёлтый, синие, зелёные и красные лучи равной интенсивности при смешении дают белый цвет.
Цветоделение и аддитивный синтез (по Максвеллу) осуществлялись следующим образом. Объект снимали на три черно - белых негатива через синее, зелёное и красное стекло. Затем печатали на прозрачной основе черно - белые позитивы и пропускали через эти позитивы лучи того же цвета, что и применявшиеся при съёмке светофильтры, проецировали на экран три частичных (одноцветных) изображения, совмещением которых по контуру получали цветное изображение объекта съёмки. Аддитивные процессы нашли некоторое применение, например в первых вариантах цветного кино. Однако из-за громоздкости съёмочных и проекционных камер и сложности совмещения частичных изображений они постепенно утратили практическое значение.
Более удобным оказался так называемый растровый метод. Окрашенные в синий, зелёный и красный цвета зёрна крахмала наносились на растры, которые располагались между стеклом или плёнкой и светочувствительным слоем. При съёмке окрашенные элементы растра служили цветоделящими микросветофильтрами, а в позитивном изображении, полученном путём обращения, – элементами цветовоспроизведения. Первые растровые фотоматериалы, так называемые автохромные пластинки, были выпущены в 1907 году фирмой «Люмьер» (Франция). Однако из - за плохой резкости полученных изображений, недостаточной яркости растровая цветная фотография уже
в 30 - е годы ХХ века уступила место методам, основанным на так называемом субтрактивном принципе синтеза цвета.
В этих методах используется тот же, что и в аддитивных процессах, принцип цветоделения, а цветовоспроизведение осуществляется вычитанием из белого света основных цветов. Это достигается смешением на белой или прозрачной основе различных количеств красителей, цвета которых являются дополнительными к основным – соответственно жёлтого, пурпурного, голубого. Так, смешением пурпурного и голубого красителей получают синий цвет (пурпурный из белого цвета вычитает зелёный цвет, а голубой – красный), жёлтого и пурпурного красителей – красный цвет, голубого и жёлтого – зелёный. Смешением равных количеств всех трех красителей получают чёрный цвет. Впервые (1868–1869) субтрактивный синтез цвета осуществил французский изобретатель Л. Дюко дю Орон.
Наибольшее распространение в современной любительской и профессиональной кино - и фотосъёмке и цветной печати получили субтрактивные процессы на многослойных цветофотографических материалах. Первые такие материалы были выпущены в 1935 году американской фирмой «Истмен Кодак» и в 1938 году германской фирмой «Агфа». Цветоделение в них достигалось путём избирательного поглощения основных цветов тремя галогенсеребряными светочувствительными слоями, размещенными на единой основе, а цветное изображение – в результате так называемого цветного проявления с использованием органических красителей, основы которого были заложены немецкими химиками Б. Гомолька и Р. Фишером в 1907 и 1912 гг., соответственно.
Цветное проявление осуществляется с помощью специальных проявителей на основе цветных проявляющих веществ, которые в отличие от черно - белых проявляющих веществ, не только превращают галогенид серебра в металлическое серебро, но и участвуют вместе с присутствующими в эмульсионных слоях цветными компонентами в образовании органических красителей.
Наряду с широким распространением «серебряных» фотоматериалов
в фотопроизводстве применяют и бессеребряные технологии, которые основаны на использовании светочувствительных слоев, не содержащих галогенидов или других соединений серебра. В них используют фотохимические процессы в веществе, растворённом в связующей среде, фотоэлектрические процессы на поверхности тонкого слоя электризованного полупроводника, фотохимические процессы непосредственно в полимерных плёнках и тонких поликристаллических слоях.
Достоинством бессеребряных фотоматериалов является одно- или двухстадийная обработка, короткое время получения на них изображения, высокая разрешающая способность, дешевизна (в 4 раза дешевле черно - белых галогенидосеребряных). К недостаткам бессеребряных материалов относят низкую светочувствительность по сравнению с галогенидосеребряными фотоматериалами. Большинство из них чувствительны к свету только
в УФ - области спектра, они плохо передают полутона. По этой причине они не применяются для прямой фотосъёмки, на них невозможно или трудно получать цветные изображения. Тем не менее бессеребряные фотоматериалы используются при микрофильмировании, копировании и размножении документов, отображении информации и других областях.
Таким образом, последовательность действий при получении фотографии включает несколько стадий. Первая стадия состоит в создании на поверхности светочувствительного слоя распределения освещённостей, соответствующего изображению или сигналу. Под действием света в светочувствительном слое происходят химические или физические изменения, различные по силе в разных его участках. Интенсивность этих проявлений определяется экспозицией, действовавшей на каждый участок светочувствительного слоя. Вторая стадия связана с усилением произошедших изменений, если они слишком малы для непосредственного восприятия глазом или прибором. На третьей стадии происходит стабилизация возникших или усиленных изменений, которая позволяет длительно сохранять полученные изображения или записи сигналов для просмотра, анализа, извлечения информации из полученного изображения.
Современные фотографическая техника и
фотографические методы
Наряду с развитием химических технологий (иначе они называются мокрыми) современная фотография использует и принципиально иные схемы. Одной из них является электронная технология фотографирования. Особенность электронных методов состоит в том, что изображение фотографируемого объекта для его регистрации предварительно преобразуется в электрический сигнал. Для оптико - электронного преобразования сигнала, осуществляемого на первой стадии процесса регистрации изображения, используют различные приборы с зарядовой связью и микроканальные усилители изображения. Возникающий на выходе «входного» преобразователя электрический сигнал записывается на носителе записи. Впервые электронные методы были разработаны для записи изображений электронным или световым лучом на обычную фотоплёнку. Такая запись нашла применение в фототелеграфии и телевидении на ранних этапах их развития.
В начале 50 - х годов XIX века изображение было впервые записано на магнитную ленту, а в 1956 году выпущен первый промышленный аппарат для магнитной записи изображений – видеомагнитофон. В 1959 году появилась термопластичная запись изображений, затем различные разновидности лазерной записи, которая осуществляется как сфокусированным лучом лазера, так и в голографической форме. Необходимо отметить важную особенность всех электронных методов, которая позволяет называть их методами фотосъёмки. Во всех электронных методах изображение может быть получено в виде, пригодном для визуального наблюдения не только на экране, но и на фотоматериале – как галогенидосеребряном, так и бессеребряном. Самым распространенным электронным методом съемки на данный момент является цифровая фотография.
Цифровая фототехника внешне практически не отличается от аппаратуры, использующей традиционные материалы. ПЗС - матрица, основная часть аппарата, исполняет роль светочувствительного слоя фотоматериала. Элементы ПЗС - матрицы имеют размер в несколько микрон и расположены в регулярном порядке на полупроводниковой пластине. При экспозиции каждый ПЗС - элемент электрически заряжается пропорционально количеству попавшего на него света (подробнее о ПЗС - матрицах будет рассказано в теме «Техника и технология телевидения»). После этого заряды записываются на носитель памяти в виде цифровой последовательности – доступный для компьютера формат. С помощью компьютера полученное изображение может быть перенесено на бумагу и другие материалы.
Таким образом, цифровая фотография не связана с химической обработкой материалов, да и материалы как таковые практически отсутствуют.
Арсенал традиционных изобразительных средств фотографии и объективность фотодокументов ограничены двумерностью фотоизображений. Фотография черно - белая и цветная, электрография и видеозапись относятся
к плоскостным видам фотографии и не позволяют представить объект объёмно – так, как его видит глаз. Отсутствие третьего измерения у этих фотоизображений обусловлено свойствами обычного света, которым пользуются в практике съёмки.
Эти недостатки устраняет стереоскопическая фотография. Она охватывает способы получения фотоизображений, при рассматривании которых создаётся ощущение их объёмности. Отличие стереоскопического изображения от обычного заключается в том, что стереоизображение состоит из двух и более сопряжённых изображений, рассматриваемых одновременно и в то же время раздельно левым и правым глазом. Сопряжёнными являются изображения, полученные фотографированием одного и того же предмета с точек, соответствующих расположению глаз, т. е. сделанные в одинаковом масштабе, с одинаковой яркостью и связанные единой перспективой. Такие изображения называются стереопарой.
Стереофотография даёт объёмное изображение, передаёт форму изображаемых объектов, характер их поверхности, взаимное расположение предметов в пространстве и другие признаки. Для получения стереофотографий используются специальные фотоаппараты с двухсъёмочными объективами и затворами. Расстояние между оптическими осями съёмочных объективов называют стереобазой аппарата. Оно равно 65 - 70 мм. Механизмы затворов и диафрагм связаны между собой, что обеспечивает синхронность их работы. Видоискатель один. Получаемые при съёмке два изображения располагаются на плёнке одно за другим и образуют стереопару. После химической обработки стереопары рассматриваются через специальные оптические устройства.
Стереофотография устраняет двумерную ограниченность фотоизображений лишь частично, ибо для получения полного эффекта объёмности потребовалось бы достаточно большое число стереопар. Изображение, практически адекватное объекту съёмки, получается с помощью голографии – особого способа записи любой информации с помощью волновых полей. В отличие от обычной фотографии в голографии в светочувствительном слое регистрируется не оптическое изображение объекта съёмки, характеризующее распределение яркостей его деталей, а тонкая и сложная интерференционная картина отображения волнового фронта объекта голографирования, несущая о нём полную амплитудно - фазовую информацию. В отличие от иных видов фотографии голограмма с поразительной точностью передаёт пространственные соотношения: различную степень удалённости отдельных предметов от наблюдателя, их угловые и линейные размеры, взаимное расположение
в пространстве. Голография даёт возможность рассматривать изображения
в разных ракурсах и получать полную иллюзию действительно рассматриваемых предметов.
В современных отечественных СМИ используется фотографическая техника как отечественных, так (в основном) и импортных производителей. Российская промышленность долгое время производила и производит зеркальный фотоаппарат «Зенит», постоянно его модернизируя. Начало моделям «Зенит» положили простые, со светоприемником над объективом, аппараты, затем появился «Зенит TTL», снабженный экспонирующим (светозамерным) устройством. Современная модель – «Зенит - АПК» – снабжена затвором, изготовленным по лицензии японской фирмы «Copal». Его главным достоинством является возможность устанавливать диапазон выдержек от 1/2000 до 1 с. Допустимый диапазон чувствительности пленки – от 25 до 1600 единиц ISO. К лучшим зарубежным фотокамерам можно отнести модельный ряд фирмы «Nikon»: «Nikon» F 5, F100, F80, F65.