Управление взаимодействием прикладных процессов
Классификация сетей
В основу классификации ТВС положены наиболее характерные функциональные, информационные и структурные признаки.
По степени территориальной рассредоточенности элементов сети (абонентских систем, узлов связи) различают глобальные (государственные), региональные и локальные вычислительные сети (ГВС, РВС и ЛВС).
По характеру реализуемых функций сети делятся на вычислительные (основные функции таких сетей - обработка информации), информационные (для получения справочных данных по запросам пользователей), информационно-вычислительные, или смешанные, в которых в определенном, непостоянном соотношении выполняются вычислительные и информационные функции.
По способу управления ТВС делятся на сети с централизованным (в сети имеется один или несколько управляющих органов), децентрализованным (каждая АС имеет средства для управления сетью) и смешанным управлением, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления (например, под централизованным управлением решаются только задачи с высшим приоритетом, связанные с обработкой больших объемов информации).
По организации передачи информации сети делятся на сети с селекцией информации и маршрутизацией информации. В сетях с селекцией информации, строящихся на основе моноканала, взаимодействие АС производится выбором (селекцией) адресованных им блоков данных (кадров): всем АС сети доступны все передаваемые в сети кадры, но копию кадра снимают только АС, которым они предназначены. В сетях с маршрутизацией информации для передачи кадров от отправителя к получателю может использоваться несколько маршрутов. Поэтому с помощью коммуникационных систем сети решается задача выбора оптимального (например, кратчайшего по времени доставки кадра адресату) маршрута.
По типу организации передачи данных сети с маршрутизацией информации делятся на сети с коммутацией цепей (каналов), коммутацией сообщений и коммутацией пакетов. В эксплуатации находятся сети, в которых используются смешанные системы передачи данных.
По топологии, т.е. конфигурации элементов в ТВС, сети делятся на два класса: широковещательные (рис. 11.1) и последовательные (рис. 11.2). Широковещательные конфигурации и значительная часть последовательных конфигураций (кольцо, звезда с интеллектуальным центром, иерархическая) характерны для ЛВС. Для глобальных и региональных сетей наиболее распространенной является произвольная (ячеистая топология). Нашли применение также иерархическая конфигурация и “звезда”.
В широковещательных конфигурациях в любой момент времени на передачу кадра может работать только одна рабочая станция (абонентная система). Остальные PC сети могут принимать этот кадр, т.е. такие конфигурации характерны для ЛВС с селекцией информации. Основные типы широковещательной конфигурации - общая шина, дерево, звезда с пассивным центром. Главные достоинства ЛВС с общей шиной - простота расширения сети, простота используемых методов управления, отсутствие необходимости в централизованном управлении, минимальный расход кабеля. ЛВС с топологией типа “дерево” - это более развитый вариант сети с шинной топологией. Дерево образуется путем соединения нескольких шин активными повторителями или пассивными размножителями (“хабами”), каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных. В ЛВС с топологией типа “звезда” в центре находится пассивный соединитель или активный повторитель -достаточно простые и надежные устройства. Для защиты от нарушений в кабеле используется центральное реле, которое отключает вышедшие из строя кабельные лучи.
Рис. 11.1. Широковещательные конфигурации сетей: а - общая шина; б- дерево; в - звезда с пассивным центром
Рис. 11.2. Последовательные конфигурации сетей: а - произвольная (ячеистая); б- иерархическая; в - кольцо; г - цепочка; д - звезда с интеллектуальным центром; е - снежинка
В последовательных конфигурациях, характерных для сетей с маршрутизацией информации, передача данных осуществляется последовательно от одной PC к соседней, причем на различных участках сети могут использоваться разные виды физической передающей среды.
К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях. К последовательным конфигурациям относятся: произвольная (ячеистая), иерархическая, кольцо, цепочка, звезда с интеллектуальным центром, снежинка. В ЛВС наибольшее распространение получили кольцо и звезда, а также смешанные конфигурации - звездно-кольцевая, звездно-шинная.
В ЛВС с кольцевой топологией сигналы передаются только в одном направлении, обычно против часовой стрелки. Каждая PC имеет память объемом до целого кадра. При перемещении кадра по кольцу каждая PC принимает кадр, анализирует его адресное поле, снимает копию кадра, если он адресован данной PC, ретранслирует кадр. Естественно, что все это замедляет передачу данных в кольце, причем длительность задержки определяется числом PC. Удаление кадра из кольца производится обычно станцией-отправителем. В этом случае кадр совершает по кольцу полный круг и возвращается к станции-отправителю, который воспринимает его как квитанцию - подтверждение получения кадра адресатом. Удаление кадра из кольца может осуществляться и станцией-получателем, тогда кадр не совершает полного круга, а станция-отправитель не получает квитанции-подтверждения.
Кольцевая .структура обеспечивает довольно широкие функциональные возможности ЛВС при высокой эффективности использования моноканала, низкой стоимости, простоте методов управления, возможности контроля работоспособности моноканала.
В широковещательных и большинстве последовательных конфигураций (за исключением кольца) каждый сегмент кабеля должен обеспечивать передачу сигналов в обоих направлениях, что достигается: в полудуплексных сетях связи — использованием одного кабеля для поочередной передачи в двух направлениях; в дуплексных сетях - с помощью двух однонаправленных кабелей; в широкополосных системах - применением различной несущей частоты для одновременной передачи сигналов в двух направлениях.
Глобальные и региональные сети, как и локальные, в принципе могут быть однородными (гомогенными), в которых применяются программно-совместимые ЭВМ, и неоднородными (гетерогенными), включающими программно-несовместимые ЭВМ. Однако, учитывая протяженность ГВС и РВС и большое количество используемых в них ЭВМ, такие сети чаще бывают неоднородными.
Управление взаимодействием прикладных процессов
Реализация рассредоточенных и взаимодействующих процессов в сетях осуществляется на основе двух концепций, одна из которых устанавливает связи между процессами без функциональной среды между ними, а другая определяет связь только через функциональную среду. В первом случае правильность понимания действий, происходящих в рамках соединяемых процессов взаимодействующих АС, обеспечивается соответствующими средствами теледоступа в составе сетевых операционных систем (СОС). Однако предусмотреть такие средства на все случаи соединения процессов нереально. Поэтому взаимодействующие процессы в сетях соединяются с помощью функциональной среды, обеспечивающей выполнение определенного свода правил - протоколов связи процессов. Обычно эти протоколы реализуются с учетом принципа пакетной коммутации, в соответствии с которым перед передачей сообщение разбивается на блоки - пакеты определенной длины. Каждый пакет представляет собой независимую единицу передачи информации, содержащую, кроме собственно данных, служебную информацию (адреса отправителя и получателя, номер пакета в сообщении, информацию для контроля правильности принятых данных).
Практика создания и развития ТВС привела к необходимости разработки стандартов по всему комплексу вопросов организации сетевых систем. В 1978 г. Международная организация по стандартизации (МОС) предложила семиуровневую эталонную модель взаимодействия открытых систем (ВОС), которая получила широкое распространение и признание. Она создает основу для анализа существующих ТВС и определения новых сетей и стандартов.
В соответствии с эталонной моделью ВОС абонентская система представляется прикладными процессами и процессами взаимодействия АС (рис. 11.3). Последние разбиваются на семь функциональных уровней [1]. Функции и процедуры, выполняемые в рамках одного функционального уровня, составляют соответствующий уровневый протокол. Нумерация уровневых протоколов идет снизу вверх, а их названия указаны на рис. 11.3. Функциональные уровни взаимодействуют на строго иерархической основе: каждый уровень пользуется услугами нижнего уровня и, в свою очередь, обслуживает уровень, расположенный выше. Стандартизация распространяется на протоколы связи одноименных уровней взаимодействующих АС. Создание ТВС в соответствии с эталонной моделью ВОС открывает возможность использования сети ЭВМ различных классов и типов. Поэтому сеть, удовлетворяющая требованиям эталонной модели, называется открытой.
Функциональные уровни рассматриваются как составные независимые части процессов взаимодействия АС. Основные функции, реализуемые в рамках уровневых протоколов, состоят в следующем.
Физический уровень - непосредственно связан с каналом передачи данных, обеспечивает физический путь для электрических сигналов, несущих информацию. На этом уровне осуществляются установление, поддержка и расторжение соединения с физическим каналом, определение электрических
Рис. 11.3. Семиуровневая модель протоколов взаимодействия открытых систем и функциональных параметров взаимодействия ЭВМ с коммуникационной подсетью.
Канальный уровень - определяет правила совместного использования физического уровня узлами связи. Главные его функции: управление передачей данных по информационному каналу (генерация стартового сигнала и организация начала передачи информации, передача информации по каналу, проверка получаемой информации и исправление ошибок, отключение канала при его неисправности и восстановление передачи после ремонта, генерация сигнала окончания передачи и перевода канала в пассивное состояние) и управление доступом к передающей среде, т.е. реализация выбранного метода доступа к общесетевым ресурсам. Физический и канальный уровни определяют характеристики физического канала и процедуру передачи по нему кадров, являющихся контейнерами, в которых транспортируются пакеты.
Сетевой уровень - реализует функции буферизации и маршрутизации, т.е. прокладывает путь между отправителем информации и адресатом через всю сеть. Основная задача сетевого протокола - прокладка в каждом физическом канале совокупности логических каналов. Два пользователя, соединенные логическим каналом, работают так, как будто только в их распоряжении имеется физический канал.
Транспортный уровень - занимает центральное место в иерархии уровней сети. Он обеспечивает связь между коммуникационной подсетью и верхними тремя уровнями, отделяет пользователя от физических и функциональных аспектов сети. Главная его задача - управление графиком (данными пользователя) в сети. При этом выполняются такие функции, как деление длинных сообщений, поступающих от верхних уровней, на пакеты данных (при передаче информации) и формирование первоначальных сообщений из набора пакетов, полученных через канальный и сетевой уровни, исключая их потери или смещение (при приеме информации). Транспортный уровень есть граница, ниже которой пакет данных является единицей информации, управляемой сетью. Выше этой границы в качестве единицы информации рассматривается только сообщение. Транспортный уровень обеспечивает также сквозную отчетность в сети.
Сеансовый уровень - предназначен для организации и управления сеансами взаимодействия прикладных процессов пользователей (сеанс создается по запросу процесса пользователя, переданному через прикладной и представительный уровни). Основные функции: управление очередностью передачи данных и их приоритетом, синхронизация отдельных событий, выбор формы диалога пользователей (полудуплексная, дуплексная передача).
Представительный уровень (уровень представления данных) - преобразует информацию к виду, который требуют прикладные процессы пользователей (например, прием данных в коде ASCII и выдача их на экран дисплея в виде страницы текста с заданным числом и длиной строк). Представительный уровень занимается синтаксисом данных. Выше этого уровня поля данных имеют явную смысловую форму, а ниже его поля рассматриваются как передаточный груз, и их смысловое значение не влияет на обработку.
Прикладной уровень - занимается поддержкой прикладного процесса пользователя и имеет дело с семантикой данных. Он является границей между процессами сети и прикладными (пользовательскими) процессами. На этом уровне выполняются вычислительные, информационно-поисковые и справочные работы, осуществляется логическое преобразование, данных пользователя.
Работы по совершенствованию эталонной модели ВОС для ЛВС привели к декомпозиции уровней 1 и 2. Канальный уровень разделен на два подуровня: подуровень управления логическим каналом (передача кадров между PC, включая исправление ошибок, диагностика работоспособности узлов сети) и подуровень управления доступом к передающей среде (реализация алгоритма доступа к среде и адресация станций сети). Физический уровень делится на три подуровня: передачи физических сигналов, интерфейса с устройством доступа и подключения к физической среде.
В ЛВС процедуры управления на физическом, канальном и транспортном уровнях не отличаются сложностью, в связи с чем эти уровни управления реализуются в основном техническими средствами, называемыми станциями локальной сети (СЛС) и адаптерами ЛВС. По существу адаптер вместе с физическим каналом образует информационный моноканал, к которому подключаются системы сети, выступающие в качестве абонентов моноканала.