Дисперсия и полоса пропускания

Затухание

Волокно характеризуется двумя важнейшими параметрами: затуханием и дисперсией. Чем меньше затухание (потери) и чем меньше дисперсия распространяемого сигнала в во­локне, тем больше может быть расстояние между регенерационными участками или повтори­телями.

На затухание света в волокне влияют такие факторы, как: потери на поглощении; потери на рассеянии; кабельные потери.

Потери на поглощении и на рассеянии вместе называют собственными потерями, в то время как кабельные потери в силу их природы называют также дополнительными потерями, рисунок 4.

Дисперсия и полоса пропускания - student2.ru

Рисунок 4 – Основные типы потерь в волокне

Полное затухание в волокне (измеряется в дБ/км) определяется в виде суммы

Дисперсия и полоса пропускания - student2.ru

(13)

Потери на поглощении αabs состоят как из собственных потерь в кварцевом стекле (ультрафиолетовое и инфракрасное поглощение), так и из потерь, связанных с поглощением света на примесях. Примесные центры, в зависимости от типа примеси, поглощают свет на определенных (присущих данной примеси) длинах волн и рассеивают поглощенную световую энергию в виде джоулева тепла.

Собственные потери на поглощении растут и становятся значимыми в ультрафиолетовой и инфракрасной областях. При длине волны излучения выше 1,6 мкм обычное кварцевое стекло становится непрозрачным из-за роста потерь, связанных с инфракрасным поглощени­ем.

Потери на рассеянии αsct . Уже к 1970 году изготавливаемое оптическое волокно становится настолько чистым (99,9999%), что наличие примесей перестает быть главенствующим фактором затухания в волокне. На длине волны 800 нм затухание составило 1,5 дБ/км. Дальнейшему уменьшению затухания препятствует так называемое рэлеевское рассеяние света. Рэлеевское рассеяние вызвано наличием неоднородностей микроскопического масштаба в волокне. Свет, попадая на такие неоднородности, рассеивается в разных направлениях. В результате часть его теряется в оболочке. Эти неоднородности неизбежно появляются во время изготовления волокна.Потери на рэлеевском рассеянии зависят от длины волны по закону λ -4 и сильней проявляются в области коротких длин волн.

Длина волны, на которой достигается нижний предел собственного затухания чистого кварцевого волокна, составляет 1550 нм и определяется разумным компромиссом между по­терями вследствие рэлеевского рассеяния и инфракрасного поглощения.

На рисунке 5 приводится общий вид спектральной зависимости собственных потерь с указанием характерных значений четырех основных параметров (минимумов затухания в трех окнах прозрачности 850, 1300 и 1550 нм, и пика поглощения на длине волны 1480 нм) для современных одномодовых и многомодовых волокон.

Дисперсия и полоса пропускания - student2.ru

Рисунок 5 – Собственные потери в оптическом волокне [2]

Кабельные (радиационные) потери αrad обусловлены скруткой, деформациями и изгибами волокон, возникающими при наложении покрытий и защитных оболочек, производства кабеля, а так же в процессе инсталляции ВОК. При соблюдении ТУ на прокладку кабеля номинальный вклад со стороны радиационных потерь составляет не больше 20% от полного затухания. Дополнительные радиационные потери появляются, если радиус изгиба кабеля становится меньше минимального радиуса изгиба, указанного в спецификации на ВОК.

Дисперсия и полоса пропускания

По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уши-рении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме.

Дисперсия – уширение импульсов – имеет размерность времени и определяется как квадратичная разность длительностей импульсов на выходе и входе кабеля длины L по формуле

Дисперсия и полоса пропускания - student2.ru

(14)

Обычно дисперсия нормируется в расчете на 1 км, и измеряется в пс/км. Дисперсия в общем случае характеризуется тремя основными факторами, рассматриваемыми ниже:

• различием скоростей распространения направляемых мод (межмодовой дисперсией τмод ),

• направляющими свойствами световодной структуры (волноводной дисперсией τ w ),

• свойствами материала оптического волокна (материальной дисперсией τ mat ).

Дисперсия и полоса пропускания - student2.ru

Рисунок 6 – Основные виды дисперсии

Чем меньше значение дисперсии, тем больший поток информации можно передать по волокну. Результирующая дисперсия τ определяется из формулы

Дисперсия и полоса пропускания - student2.ru (15)

Межмодовая дисперсия

Межмодовая дисперсия возникает вследствие различной скорости распространения мод, и имеет место только в многомодовом волокне (рисунок 3 а, б). Для ступенчатого многомодового волокна и градиентного многомодового волокна с параболическим профилем показателя преломления ее можно вычислить соответственно по формулам

Дисперсия и полоса пропускания - student2.ru

(16)

где Lc - длина межмодовой связи (для ступенчатого волокна порядка 5 км, для градиентного - порядка 10 км).

Изменение закона дисперсии с линейного на квадратичный связано с неоднородностями, которые есть в реальном волокне. Эти неоднородности приводят к взаимодействию между модами, и перераспределению энергии внутри них. При L > Lc наступает установившийся режим, когда все моды в определенной установившейся пропорции присутствуют в излучении. Обычно длины линий связи между активными устройствами при использовании многомодового волокна не превосходят 2 км и значительно меньше длины межмодовой связи. Поэтому можно пользоваться линейным законом дисперсии.

Вследствие квадратичной зависимости от Δ значения межмодовой дисперсии у градиентного волокна значительно меньше, чем у ступенчатого, что делает более предпочтительным использование градиентного многомодового волокна в линиях связи.

На практике, особенно при описании многомодового волокна, чаще пользуются термином полоса пропускания.При расчете полосы пропускания W можно воспользоваться формулой

Дисперсия и полоса пропускания - student2.ru (17)

Измеряется полоса пропускания в МГц·км. Из определения полосы пропускания видно, что дисперсия накладывает ограничения на дальность передачи и верхнюю частоту передаваемых сигналов. Физический смыслW - это максимальная частота (частота модуляции) передаваемого сигнала при длине линии 1 км. Если дисперсия линейно растет с ростом рас­тояния, то полоса пропускания зависит от расстояния обратно пропорционально.

Наши рекомендации