Концепция разработки современных АСУТП
Лекция 4
Современная АСУТП (автоматизированная система управления технологическим процессом) представляет собой многоуровневую человеко-машинную систему управления. Создание АСУ сложными технологическими процессами осуществляется с использованием автоматических информационных систем сбора данных и вычислительных комплексов, которые постоянно совершенствуются по мере эволюции технических средств и программного обеспечения.
4.1 История развития АСУ ТП
Непрерывную во времени картину развития АСУТП можно разделить на три этапа, обусловленные появлением качественно новых научных идей и технических средств. В ходе истории меняется характер объектов и методов управления, средств автоматизации и других компонентов, составляющих содержание современной системы управления.
· Первый этап отражает внедрение систем автоматического регулирования (САР). Объектами управления на этом этапе являются отдельные параметры, установки, агрегаты; решение задач стабилизации, программного управления, слежения переходит от человека к САР. У человека появляются функции расчета задания и параметры настройки регуляторов.
· Второй этап - автоматизация технологических процессов. Объектом управления становится рассредоточенная в пространстве система; с помощью систем автоматического управления (САУ) реализуются все более сложные законы управления, решаются задачи оптимального и адаптивного управления, проводится идентификация объекта и состояний системы. Характерной особенностью этого этапа является внедрение систем телемеханики в управление технологическими процессами. Человек все больше отдаляется от объекта управления, между объектом и диспетчером выстраивается целый ряд измерительных систем, исполнительных механизмов, средств телемеханики, мнемосхем и других средств отображения информации (СОИ).
· Третий этап - автоматизированные системы управления технологическими процессами - характеризуется внедрением в управление технологическими процессами вычислительной техники. Вначале - применение микропроцессоров, использование на отдельных фазах управления вычислительных систем; затем активное развитие человеко-машинных систем управления, инженерной психологии, методов и моделей исследования операций и, наконец, диспетчерское управление на основе использования автоматических информационных систем сбора данных и современных вычислительных комплексов.
От этапа к этапу менялись и функции человека (оператора/диспетчера), призванного обеспечить регламентное функционирование технологического процесса. Расширяется круг задач, решаемых на уровне управления; ограниченный прямой необходимостью управления технологическим процессом набор задач пополняется качественно новыми задачами, ранее имеющими вспомогательный характер или относящиеся к другому уровню управления.
Диспетчер в многоуровневой автоматизированной системе управления технологическими процессами получает информацию с монитора ЭВМ или с электронной системы отображения информации и воздействует на объекты, находящиеся от него на значительном расстоянии с помощью телекоммуникационных систем, контроллеров, интеллектуальных исполнительных механизмов.
Основой, необходимым условием эффективной реализации диспетчерского управления, имеющего ярко выраженный динамический характер, становится работа с информацией, т. е. процессы сбора, передачи, обработки, отображения, представления информации.
От диспетчера уже требуется не только профессиональное знание технологического процесса, основ управления им, но и опыт работы в информационных системах, умение принимать решение (в диалоге с ЭВМ) в нештатных и аварийных ситуациях и многое другое. Диспетчер становится главным действующим лицом в управлении технологическим процессом, что требует применения нового подхода при разработке систем управления: ориентацию на оператора/диспетчера и его задачи.
Концепция SCАDA (Supervisory Control And Data Acquisition - диспетчерское управление и сбор данных) предопределена всем ходом развития систем управления и результатами научно-технического прогресса. Применение SCADA-технологий позволяет достичь высокого уровня автоматизации в решении задач разработки систем управления, сбора, обработки, передачи, хранения и отображения информации.
Дружественность человеко-машинного интерфейса (HMI/MMI), предоставляемого SCADA - системами, полнота и наглядность представляемой на экране информации, доступность "рычагов" управления, удобство пользования подсказками и справочной системой и т. д. - повышает эффективность взаимодействия диспетчера с системой и сводит к нулю его критические ошибки при управлении.
Следует отметить, что концепция SCADA, основу которой составляет автоматизированная разработка систем управления, позволяет решить еще ряд задач, долгое время считавшихся неразрешимыми: сократить сроки разработки проектов по автоматизации и прямые финансовые затраты на их разработку.
В настоящее время SCADA является основным и наиболее перспективным методом автоматизированного управления сложными динамическими системами (процессами).
Управление технологическими процессами на основе систем SCADA стало осуществляться в передовых западных странах в 80-е годы. Область применения охватывает сложные объекты электро- и водоснабжения, химические, нефтехимические и нефтеперерабатывающие производства, железнодорожный транспорт, транспорт нефти и газа и др.
В России диспетчерское управление технологическими процессами опиралось, главным образом, на опыт оперативно-диспетчерского персонала. Поэтому переход к управлению на основе SCADA-систем стал осуществляться несколько позднее. К трудностям освоения в России новой информационной технологии, какой являются SCADA-системы, относится как отсутствие эксплуатационного опыта, так и недостаток информации о различных SCADA-системах.
Большое значение при внедрении современных систем диспетчерского управления имеет решение следующих задач:
· выбора SCADA-системы (исходя из требований и особенностей технологического процесса);
· кадрового сопровождения.
4.2 Компоненты систем контроля и управления и их назначение
Многие проекты автоматизированных систем контроля и управления (СКУ) для большого спектра областей применения позволяют выделить обобщенную схему их реализации, представленную на рисунке 2.1.
Рисунок 2.1 – Структурная схема системы контроля и управления современного производства |
Как правило, это двухуровневые системы, так как именно на этих уровнях реализуется непосредственное управление технологическими процессами. Специфика каждой конкретной системы управления определяется используемой на каждом уровне программно-аппаратной платформой.
· Нижний уровень – уровень объекта (контроллерный) – включает различные датчики для сбора информации о ходе технологического процесса, электроприводы и исполнительные механизмы для реализации регулирующих и управляющих воздействий. Датчики поставляют информацию локальным программируемым логическим контроллерам, которые могут выполнять следующие функции:
- сбор и обработка информации о параметрах технологического процесса;
- управление электроприводами и другими исполнительными механизмами;
- решение задач автоматического логического управления и др.
Так как информация в контроллерах предварительно обрабатывается и частично используется на месте, существенно снижаются требования к пропускной способности каналов связи.
В качестве локальных программируемых контроллеров в системах контроля и управления различными технологическими процессами в настоящее время применяются контроллеры как отечественных производителей, так и зарубежных. На рынке представлены многие десятки и даже сотни типов контроллеров, способных обрабатывать от нескольких переменных до нескольких сот переменных.
К аппаратно-программным средствам контроллерного уровня управления предъявляются жесткие требования по надежности, времени реакции на исполнительные устройства, датчики и т.д. Программируемые логические контроллеры должны гарантированно откликаться на внешние события, поступающие от объекта, за время, определенное для каждого события.
Для критичных с этой точки зрения объектов рекомендуется использовать контроллеры с операционными системами реального времени (ОСРВ). Контроллеры под управлением ОСРВ функционируют в режиме жесткого реального времени.
Разработка, отладка и исполнение программ управления локальными контроллерами осуществляется с помощью специализированного программного обеспечения, широко представленного на рынке.
К этому классу инструментального ПО относятся пакеты типа ISaGRAF (CJ International France), InConrol (Wonderware, USA), Paradym 31 (Intellution, USA), имеющие открытую архитектуру.
· Информация с локальных контроллеров может направляться в сеть диспетчерского пункта непосредственно, а также через контроллеры верхнего уровня (см. рис.). В зависимости от поставленной задачи контроллеры верхнего уровня (концентраторы, интеллектуальные или коммуникационные контроллеры) реализуют различные функции. Некоторые из них перечислены ниже:
- сбор данных с локальных контроллеров;
- обработка данных, включая масштабирование;
- поддержание единого времени в системе;
- синхронизация работы подсистем;
- организация архивов по выбранным параметрам;
- обмен информацией между локальными контроллерами и верхним уровнем;
- работа в автономном режиме при нарушениях связи с верхним уровнем;
- резервирование каналов передачи данных и др.
· Верхний уровень - диспетчерский пункт (ДП) – включает, прежде всего, одну или несколько станций управления, представляющих собой автоматизированное рабочее место (АРМ) диспетчера/оператора. Здесь же может быть размещен сервер базы данных, рабочие места (компьютеры) для специалистов и т. д. Часто в качестве рабочих станций используются ПЭВМ типа IBM PC различных конфигураций.
Станции управления предназначены для отображения хода технологического процесса и оперативного управления. Эти задачи и призваны решать SCADA - системы. SCADА – это специализированное программное обеспечение, ориентированное на обеспечение интерфейса между диспетчером и системой управления, а также коммуникацию с внешним миром.
Спектр функциональных возможностей определен самой ролью SCADA в системах управления и реализован практически во всех пакетах:
- автоматизированная разработка, дающая возможность создания ПО системы автоматизации без реального программирования;
- средства исполнения прикладных программ;
- сбор первичной информации от устройств нижнего уровня;
- обработка первичной информации;
- регистрация алармов и исторических данных;
- хранение информации с возможностью ее пост-обработки (как правило, реализуется через интерфейсы к наиболее популярным базам данных);
- визуализация информации в виде мнемосхем, графиков и т.п.;
- возможность работы прикладной системы с наборами параметров, рассматриваемых как "единое целое".
Рассматривая обобщенную структуру систем управления, следует ввести и еще одно понятие – Micro-SCADA. Micro-SCADA – это системы, реализующие стандартные (базовые) функции, присущие SCADA – системам верхнего уровня, но ориентированные на решение задач автоматизации в определенной отрасли (узкоспециализированные). В противоположность им SCADA – системы верхнего уровня являются универсальными.
· Все компоненты системы управления объединены между собой каналами связи. Обеспечение взаимодействия SCADA-систем с локальными контроллерами, контроллерами верхнего уровня, офисными и промышленными сетями возложено на так называемое коммуникационное ПО. Это достаточно широкий класс программного обеспечения, выбор которого для конкретной системы управления определяется многими факторами, в том числе и типом применяемых контроллеров, и используемой SCADA-системой.
· Большой объем информации, непрерывно поступающий с устройств ввода/вывода систем управления, предопределяет наличие в таких системах баз данных (БД). Основная задача баз данных – своевременно обеспечить пользователя всех уровней управления требуемой информацией. Но если на верхних уровнях АСУ эта задача решена с помощью традиционных БД, то этого не скажешь об уровне АСУ ТП. До недавнего времени регистрация информации в реальном времени решалась на базе ПО интеллектуальных контроллеров и SCADA-систем. В последнее время появились новые возможности по обеспечению высокоскоростного хранения информации в БД.
4.3 SCADA-системы
SCADA-система в общем случае включает в себя следующие составляющие:
1 Графический интерфейс.
2 Средства организации взаимодействия с контроллерами.
3 Алармы и события.
4 Тренды.
5 Встроенные языки программирования.
6 Базы данных.
1 Графический интерфейс
Средства визуализации - одно из базовых свойств SCADA - систем. В каждой из них существует графический объектно-ориентированный редактор с определенным набором анимационных функций. Используемая векторная графика дает возможность осуществлять широкий круг операций над выбранным объектом. Объекты могут быть простыми (линии, прямоугольники, текстовые объекты и т. д.) и сложные. Возможности агрегирования сложных объектов в разных SCADA-системах различны. Все SCADA-системы включают библиотеки стандартных графических символов, библиотеки сложных графических объектов, обладают целым рядом других стандартных возможностей.
2 Средства организации взаимодействия с контроллерами
Современные SCADA - системы не ограничивают выбора аппаратуры нижнего уровня (контроллеров), так как предоставляют большой набор драйверов или серверов ввода/вывода и имеют хорошо развитые средства создания собственных программных модулей или драйверов новых устройств нижнего уровня.
Для подсоединения драйверов ввода/вывода к SCADA - системе в настоящее время используются следующие механизмы:
· ставший стандартом de facto динамический обмен данными (DDE);
· собственные протоколы фирм-производителей SCADA - систем, реально обеспечивающие самый скоростной обмен данными;
· новый OPC - протокол, который, с одной стороны, является стандартным и поддерживается большинством SCADA - систем, а с другой стороны, лишен недостатков протоколов DDE.
Для организации взаимодействия с контроллерами могут быть использованы следующие аппаратные средства:
· COM - порты.
· В этом случае контроллер или объединенные сетью контроллеры подключаются по протоколам RS-232, RS-422, RS-485.
· Сетевые платы.
· Использование такой аппаратной поддержки возможно, если соответствующие контроллеры снабжены интерфейсным выходом на Ethernet.
· Вставные платы.
· В этом случае протокол взаимодействия определяется платой и может быть уникальным. В настоящее время предлагаются реализации в стандартах ISA, PCI, CompactPCI.
3 Алармы и события
Состояние тревоги, в дальнейшем аларм (Alarm) - это некоторое сообщение, предупреждающее оператора о возникновении определенной ситуации, которая может привести к серьезным последствиям, и потому требующее его внимания, а часто и вмешательства.
А принял - ли оператор сообщение об аларме? Чтобы снять эти сомнения, в системах управления принято различать неподтвержденные и подтвержденные алармы. Аларм называется подтвержденным после того, как оператор отреагировал на сообщение об аларме. До этого аларм оставался в состоянии неподтвержденного.
Наряду с алармами в SCADA - системах существует понятие событий. События представляют собой обычные статусные сообщения системы и не требуют реакции оператора. Обычно событие генерируется при возникновении в системе определенных условий (типа регистрации оператора в системе).
От эффективности подсистемы алармов зависит скорость идентификации неисправности, возникшей в системе, или технологического параметра, вышедшего за установленные регламентом границы. Быстродействие и надежность этой подсистемы могут существенно сократить время простоя технологического оборудования. Например, если оператор не получит вовремя информацию о том, что двигатель насоса перегрелся, это может привести в лучшем случае к выходу насоса из строя, а то и к крупной аварии.
Причины, вызывающие состояние аларма, могут быть самыми разными. Неисправность может возникнуть в самой SCADA-системе, в контроллерах, каналах связи, в технологическом оборудовании. Может выйти из строя датчик или нарушатся его метрологические характеристики. Параметры технологического процесса могут выйти за границы, установленные регламентом и т. д.
4 Тренды
Графическое представление значений технологических параметров во времени способствует лучшему пониманию динамики технологического процесса предприятия. Поэтому подсистема создания трендов и хранения информации о параметрах с целью ее дальнейшего анализа и использования для управления является неотъемлемой частью любой SCADA - системы.
Тренды реального времени (Real Time) отображают динамические изменения параметра в текущем времени. При появлении нового значения параметра в окне тренда происходит прокрутка графика справа налево. Таким образом текущее значение параметра выводится всегда в правой части окна.
Тренды становятся историческими (Historical) после того, как данные будут записаны на диск и можно будет использовать режим прокрутки предыдущих значений назад с целью посмотреть прошлые значения. Отображаемые данные тренда в таком режиме будут неподвижны и будут отображаться только за определенный период.
5 Встроенные языки программирования
Встроенные языки программирования - мощное средство SCADA - систем, предоставляющее разработчику гибкий инструмент для разработки сложных приложений. Первые версии SCADA - систем либо не имели подобных языков, либо эти языки реализовывали небогатый набор функций. В современных версиях SCADA - систем функциональные возможности языков становятся существенно богаче. Явно выделяются два подхода:
· Ориентация встроенных языков программирования на технологов. Функции в таких языках являются высокоуровневыми, не требующими профессиональных навыков программирования при их использовании. Количество таких функций в базовых поставках не исчисляется сотнями, хотя существуют свободно распространяемые библиотеки дополнительных функций.
· Ориентация на системного интегратора. В этом случае в качестве языков чаще всего используются VBasic - подобные языки.
В каждом языке допускается расширение набора функций. В языках, ориентированных на технологов, это расширение достигается с помощью дополнительных инструментальных средств (Toolkits). Разработка дополнительных функций выполняется обычно программистами - профессионалами.
6 Базы данных
В самом общем смысле база данных (БД) - это система хранения информации, обращение к которой осуществляется через средство управления базой данных (СУБД). На практике - это данные, рассортированные по уникальным идентификаторам и организованные в виде таблиц. Основное назначение БД - предоставить пользователю нужную информацию в нужном месте и в нужное время.