Аналоговые коммутаторы

9. Коммутаторы на полевых транзисторах.

10. Промышленные аналоговые коммутаторы.

11. Характеристики аналоговых коммутаторов.

12. Применение аналоговых коммутаторов.

Аналоговый коммутатор служит для переключения непрерывно изменяющихся электрических сигналов. Если коммутатор находится в состоянии «включено», его выходное напряжение должно по возможности точно равняться входному; если же коммутатор находится в состоянии «выключено», выходное напряжение должно быть как можно ближе к нулю. Существуют различные схемные решения коммутаторов, удовлетворяющие указанным условиям. Их принцип действия показан на Рис. 1на примере механических (контактных) переключателей.

Аналоговые коммутаторы - student2.ru Аналоговые коммутаторы - student2.ru Аналоговые коммутаторы - student2.ru

Рис. 1. Схемы механических коммутаторов:

а — последовательный, б — параллельный, в — последовательно-

параллельный

На Рис. 1а представлен последовательный коммутатор. Пока контакт замкнут, VOUT= VIN. Когда контакт размыкается, выходное напряжение становится равным нулю. Все это справедливо, если источник сигнала имеет нулевое выходное сопротивление и емкость нагрузки равна нулю. При значительном выходном сопротивлении источника сигнала напряжение VOUT делится между этим сопротивлением и резистором R. Поэтому эту схему не следует применять в случае, если источником сигнала является источник тока, например фотодиод. При существенной емкости нагрузки во время разряда этой емкости при размыкании ключа S выходное напряжение коммутатора падает до нуля не мгновенно.

В схеме параллельного коммутатора (Рис. 1б) VOUT= VIN при разомкнутом ключе, если входное сопротивление нагрузки коммутатора бесконечно велико. Если же оно соизмеримо с сопротивлением резистора R, то на резисторе будет падать часть выходного напряжения источника сигнала. При наличии емкостной нагрузки будет относительно медленно устанавливаться выходное напряжение после размыкания ключа.

Последовательно-параллельный коммутатор, показанный на Рис. 1*, объединяет достоинства двух предыдущих схем. В положении 1 он имеет выходное сопротивление, равное выходному сопротивлению источника сигнала, и при его малой величине коммутатор обладает коэффициентом передачи близким к 1 и малым временем установления выходного напряжения при заметной емкости нагрузки. В положении 2 его выходное напряжение и выходное сопротивление равны нулю, что обеспечивает практически мгновенный разряд емкости нагрузки.

Разновидности аналоговых коммутаторов, показанные на Рис. .1, могут быть реализованы на электронных элементах с управляемым сопротивлением, имеющим малое минимальное и высокое максимальное значения. Для этих целей могут использоваться диодные мосты, биполярные и полевые транзисторы. Вследствие неидеальности они вносят ряд статических и динамических погрешностей в коммутируемые сигналы.

В числе основных источников погрешностей электронных аналоговых коммутаторов можно назвать следующие:

• проходное сопротивление электронного ключа не равно нулю во включенном состоянии и, конечно, в выключенном;

• наличие не равного нулю остаточного напряжения на замкнутом ключе при нулевом коммутируемом сигнале;

• нелинейная зависимость сопротивления ключа от напряжения (тока) как на сигнальном, так и на управляющем входах;

• взаимовлияние управляющего и коммутируемого сигналов;

• наличие целого ряда паразитных емкостей, одни из которых приводят к ослаблению высокочастотных составляющих коммутируемого сигнала при замкнутом ключе, другие — к просачиванию коммутируемого сигнала на выход при разомкнутом ключе, и, наконец, третьи обуславливают дополнительные связи между каналами, а также между управляющими и сигнальными цепями;

• ограниченный динамический диапазон коммутируемых токов и напряжений.

Ключи на биполярных транзисторах и в особенности на диодных мостах потребляют значительную мощность по цепям управления и имеют сравнительно большое остаточное напряжение, составляющее единицы мВ, что вносит заметную погрешность при коммутации слабых сигналов (менее 100 мВ). Такие ключи имеют высокое быстродействие (время переключения диодных ключей, выполненных на диодах Шоттки, достигает 1 не) и применяются для построения сверхскоростных коммутаторов. В менее быстродействующих коммутаторах гораздо шире применяются ключи на полевых транзисторах.

Наши рекомендации