Nature of the Engineers Work
Engineers apply the principles of science and mathematics to develop economical solutions to technical problems. Their work is the link between perceived social needs and commercial applications.
Engineers consider many factors when developing a new product. For example, in developing an industrial robot, engineers precisely specify the functional requirements; design and test the robot’s components; integrate the components to produce the final design; and evaluate the design’s overall effectiveness, cost, reliability, and safety. This process applies to the development of many different products, such as chemicals, computers, gas turbines, helicopters, and toys.
In addition to design and development, many engineers work in testing, production, or maintenance. These engineers supervise production in factories, determine the causes of component failure, and test manufactured products to maintain quality. They also estimate the time and cost to complete projects. Some move into engineering management or into sales. In sales, an engineering background enables them to discuss technical aspects and assist in product planning, installation, and use. Supervisory engineers are responsible for major components or entire projects.
Engineers use computers extensively to produce and analyze designs; to simulate and test how a machine, structure, or system operates; and to generate specifications for parts. Many engineers also use computers to monitor product quality and control process efficiency. The field of nanotechnology, which involves the creation of high-performance materials and components by integrating atoms and molecules, also is introducing entirely new principles to the design process.
Most engineers work in office buildings, laboratories, or industrial plants. Others may spend time outdoors at construction sites and oil and gas exploration and production sites, where they monitor or direct operations or solve onsite problems. Some engineers travel extensively to plants or worksites.
It is important for engineers, as it is for those working in other technical and scientific occupations, to continue their education throughout their careers because much of their value to their employer depends on their knowledge of the latest technology. Engineers in high-technology areas, such as advanced electronics or information technology, may find that technical knowledge can become outdated rapidly. By keeping current in their field, engineers are able to deliver the best solutions and greatest value to their employers.
Engineers who have not kept current in their field may find themselves passed over for promotions or vulnerable to layoffs. Competitive pressures and advancing technology force many industrial companies to improve and update product designs and to optimize their manufacturing processes. Employers rely on engineers to further increase productivity as investment in plant and equipment increases to expand output of goods and services.
New technologies continue to improve the design process, enabling engineers to produce and analyze various product designs much more rapidly than in the past.
Text 23
Civil Engineering
In modern usage, civil engineering is a broad field of engineering that deals with the plannning, construction, and maintenance of fixed structures, or public works, as they are related to earth, water, or civilization and their processes.
Most civil engineering today deals with roads, structures, water supply, sewer, flood control and traffic. In essence, civil engineering is a profession which makes the world a more habitable place to live.
Engineering has developed from observations of the ways natural and constructed systems react and from the development of empirical equations that provide bases for design. Civil engineering is the broadest of the engineering fields. In fact, engineering was once divided into only two fields--military and civil. Civil engineering is still an umbrella field comprised of many related specialties.
General civil engineering is concerned with the overall interface of fixed projects with the greater world. General civil engineers work closely with surveyors and specialized civil engineers to fit and serve fixed projects within their given site, community and terrain by designing grading, drainage (flood control), paving, water supply, sewer service, electric and communications supply and land (real property) divisions. General engineers spend much of their time visiting project sites, developing community/neighborhood consensus, and preparing construction plans.
Structural engineering is concerned with the design of bridges, buildings, offshore oil platforms, dams etc. Structural design and structural analysis are components of structural engineering and a key component in the structural design process. This involves computing the stresses and forces at work within a structure. There are some structural engineers who work in non-typical areas, such as designing aircraft, spacecraft and even biomedical devices. Major design concerns are building seismic resistant structures and seismically retrofitting existing structures.
Geotechnical engineering. The main subject of the studies also known as soil mechanics is concerned with soil properties, mechanics of soil particles, compression and swelling of soils, seepage, slopes, retaining walls, foundations, footings, ground and rock anchors, use of synthetic tensile materials in soil structures, soil-structure interaction and soil dynamics. Geotechnical engineering covers this field of studies for application in engineering. The importance of geotechnical engineering can hardly be overstated: buildings must be supported by reliable foundations. Dam design and construction reducing flooding of lower drainage areas is an important subject of geotechnical engineering.
Transportation engineering. Transportation engineering is primarily concerned with motorized road transportation, especially in North America. This includes areas such as queuering theory and traffic flow planning, roadway geometric design and driver behavior patterns. Simulation of traffic operation is performed through use of trip generation, traffic assignment algorithms which can be highly complex computational problems. Other specialized areas of transportation engineering deal with the designs of non-road transportation facilities, such as rail systems, airports, and ports.
Environmental engineering. Wastewater treatment is a critical activity in environmental engineering, a sub-discipline of civil engineering. Environmental engineering deals with the treatment of chemical, biological, and/or thermal waste, the purification of water and air, and the remediation of contaminated sites, due to prior waste disposal or accidental contamination. Among the topics covered by environmental engineering are water purification, sewage treatment, and hazardous waste management.
Environmental engineering is related to the fields of hydrology, geohydrology and meteorology insofar as knowledge of water and groundwater flows is required to understand pollutant transport. Environmental engineers are also involved in pollution reduction, green engineering, and industrial ecology.
Environmental engineering also deals with the gathering of information on the environmental consequences of proposed actions and the assessment of effects of proposed actions for the purpose of assisting society and policy makers in the decision making process. Environmental engineering is the contemporary term for sanitary engineering. Some other terms in use are public health engineering and environmental health engineering.
Hydraulic engineering is concerned with the flow and conveyance of fluids, principally water. This area of engineering is intimately related to the design of pipelines, water distribution systems, drainage facilities (including bridges, dams, channels, culverts, levees, and storm sewers), canals, and to environmental engineering. Hydraulic engineers design these facilities using the concepts of fluid pressure, fluid statics, fluid dynamics, and hydraulics, among others.
Construction engineering. Construction engineering involves planning and execution of the designs from transportation, site development, hydraulic, environmental, structural and geotechnical engineers. Urban Engineering. Urban engineering is a subset of the general practice of urban planning. It is limited to civil engineering in an urban setting and does not include designing buildings or their functions.
Text 24